Numpy科学计算从放弃到入门】的更多相关文章

目录 一.什么是Numpy ndarray对象 相关文档 二.如何创建数组 三.如何访问数组 下标索引 切片索引 布尔型索引 整数索引 方形索引 四.如何做算数运算 五.如何使用统计函数 六.数组转置和轴对换 七.唯一化以及集合逻辑 八.随机数生成 九.文件输入输出 以二进制格式保存到磁盘 存取文本文件 一.什么是Numpy Numpy是Python科学计算的基础包,不仅是python中使用最多的第三方库,还是SciPy.Pandas等数据科学的基础库.所提供的结构比Python自身的更高级.更…
解决两个问题: (1)Import Error: No module named numpy (2)Python version 2.7 required, which was not found in the registry (1)这种错误是因为没有安装numpy科学计算库,因此需要安装此模块. 首先下载正确的exe安装文件:numpy-MKL-1.8.0.win-amd64-py2.7.exe. 接着我们双加打开安装文件,点击运行按钮 安装过程很简单,点击下一步 在第一步,如果你看到自己的…
#起别名避免重名 import numpy as np #小技巧:print从外往内看==shape从左往右看 if __name__ == "__main__": print('numpy版本号 {}'.format(np.version.version)) n_1 = np.array([1,2,3]) print('\n{} \n{} 维数组 \n{} 形状包含元素个数'.format(n_1, n_1.ndim, n_1.shape)) n_2 = np.array([[1,2…
NumPy 目录 关于 numpy numpy 库 numpy 基本操作 numpy 复制操作 numpy 计算 numpy 常用函数 1 关于numpy / About numpy NumPy系统是Python的一种开源的数值计算扩展包.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)).据说NumPy将Python相当于变成一种免费的更强大的MatLab系统.参考官网解释, N…
NumPy介绍   NumPy(Numerical Python)是一个开源的Python科学计算库,用于快速处理任意维度的数组. NumPy支持常见的数组和矩阵操作.对于同样的数值计算任务,使用Numpy比直接使用Python要简洁的多. NumPy使用ndarray对象来处理多维数组,该对象是一个快速而灵活的大数据容器. 为什么要学NumPy 1. 快速 2. 方便 3. 科学计算的基础库 NumPy的优势 对于同样的数值计算任务,使用NumPy要比直接编写Python代码便捷得多; Num…
一.NumPy 1.NumPy:Numberical Python 2.高性能科学计算和数据分析的基础包 3.ndarray,多维数组(矩阵),具有矢量运算的能力,快速.节省空间 (1)ndarray,N维数组对象(矩阵) (2)所有元素必须是相同类型 (3)ndim属性,维度个数 (4)shape属性,各维度的大小 (5)dtype属性,数据类型 4.矩阵运算,无需循环,可完成类似Matlab中的矢量计算 5.线性代数.随机数生成 6.import numpy as np narray多维数组…
import numpy as np #一元函数 #绝对值计算 a = -1b = abs(a)print(b)输出: 1 #开平方计算 a = 4b = np.sqrt(a)print(b)输出: 2.0 #平方计算 a = 12b = np.square(a)print(b)输出:144 #e的指数 a = np.exp(1)b = np.exp(2) print(a)print(b)输出:2.718281828459045 7.38905609893065 #对数#以e为底数 a = np…
Numpy初探 Numpy基础数据结构 Numpy数组是一个多维数组,称为ndarray.其由两部分组成: 实际的数据 描述这些数据的原数据 导入该库: import numpy as np 多维数组ndarray 数组的基本属性 数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推 在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量 ar = np.array([1,2,3,4,5,6,7]) print(ar) # 输出数组,注意数组的格式:…
import numpy as np #创建ndarray# data1 = [6, 5, 7, 1, 3]# arrl = np.array(data1)# print(arrl)#多维列表创建ndarraydata2 = [[3, 4, 2], [1, 8, 9]]arr2 = np.array(data2)## print(arr2)## asrr1 = np.asarray([2, 3, 4])# print(asrr1)## asrr2 = np.asarray([[2, 1, 3,…
一:Mayavi库的基本元素 .处理图形可视化和图形操作的mlab模块 .操作管线对象,窗口对象的api (一)mlab模块 (二)mayavi的api 二:快速绘图实例 (一)mlab.mesh的使用,快速创建绘图 >>> x = [[-,,,-,-],[-,,,-,-]] >>> y = [[-,-,-,-,-],[,,,,]] >>> z = [[,,-,-,],[,,-,-,]] >>> from mayavi import…