笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 7. 词性标注 7.1 词性标注概述 什么是词性 在语言学上,词性(Par-Of-Speech, Pos )指的是单词的语法分类,也称为词类.同一个类别的词语具有相似的语法性质,所有词性的集合称为词性标注集.不同的语料库采用了不同的词性标注集,一般都含有形容词.动词.名词等常见词性.下图就是HanLP输出的一个含有词性的结构化句子. 我/r 的/u 希望/n 是/v 希望/v 张…
转载自 http://www.cnblogs.com/skyme/p/4651331.html HMM(隐马尔可夫模型)是用来描述隐含未知参数的统计模型,举一个经典的例子:一个东京的朋友每天根据天气{下雨,天晴}决定当天的活动{公园散步,购物,清理房间}中的一种,我每天只能在twitter上看到她发的推“啊,我前天公园散步.昨天购物.今天清理房间了!”,那么我可以根据她发的推特推断东京这三天的天气.在这个例子里,显状态是活动,隐状态是天气. HMM描述 任何一个HMM都可以通过下列五元组来描述:…
HMM的模型  图1 如上图所示,白色那一行描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,蓝紫色那一行是各个状态生成可观测的随机序列 话说,上面也是个贝叶斯网络,而贝叶斯网络中有这么一种,如下图: 代表:c确定时a和b独立.(c为实心圆代表:c已经被确定) 这时,如果把z1看成a,x1看成b,z2看成c的话,则因为第一个图的z1是不可观测的(所以z1是空心圆),也就是没确定,则x1和z2就一定有联系. 进一步,如果把z2.x2合在一起看成c的话,则x1和z2.x2就一定有联系,则x1和x…
1.安装依赖包hmmlearn 直接pip install hmmlearn可能会报错(安装这个模块需要使用C环境编译) 可以尝试用 conda install -c omnia hmmlearn安装. 2.详细关于HMM的知识可以看这篇博客…
最近工作需要优化LSTM-CRF经典模型中的维特比解码部分,发现对维特比一直是个模糊概念,没有get到本质,搜了一圈,发现一篇好文,mark 博主不让转载,mark个地址吧: https://blog.csdn.net/xueyingxue001/article/details/52396494…
本科阶段学了三四遍的HMM,机器学习课,自然语言处理课,中文信息处理课:如今学研究生的自然语言处理,又碰见了这个老熟人: 虽多次碰到,但总觉得一知半解,对其了解不够全面,借着这次的机会,我想要直接搞定这个大名鼎鼎的模型,也省着之后遇到再费心.     Outline 模型引入与背景介绍 从概率图讲起 贝叶斯网络.马尔科夫模型.马尔科夫过程.马尔科夫网络.条件随机场 HMM的形式化表示 Markov Model的形式化表示 HMM的形式化表示 HMM的两个基本假设 HMM的三个基本问题 Evalu…
1.隐马尔可夫HMM模型 一个隐马尔可夫模型可以表示为\[\lambda=\{A,B,\pi\}\]具体就不说了,比较基本. 2.HMM模型的三个基本问题 1.概率计算问题:给定\(\lambda\)和观测序列\(\{x_{i}\}\),求\(P(x_{i}| \lambda)\).主要方法是前向计算法或后向计算法 2.学习算法问题:对于给定的一个观察值序列,调整参数λ,使得观察值出现的概率p(σ|λ)最大 a.有隐变量,有监督时:HMM b.有隐变量,无监督:Baum-Welch c.无隐变量…
1. 前言 隐马尔科夫HMM模型是一类重要的机器学习方法,其主要用于序列数据的分析,广泛应用于语音识别.文本翻译.序列预测.中文分词等多个领域.虽然近年来,由于RNN等深度学习方法的发展,HMM模型逐渐变得不怎么流行了,但并不意味着完全退出应用领域,甚至在一些轻量级的任务中仍有应用.本系列博客将详细剖析隐马尔科夫链HMM模型,同以往网络上绝大多数教程不同,本系列博客将更深入地分析HMM,不仅包括估计序列隐状态的维特比算法(HMM解码问题).前向后向算法等,而且还着重的分析HMM的EM训练过程,并…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 4. 隐马尔可夫模型与序列标注 第3章的n元语法模型从词语接续的流畅度出发,为全切分词网中的二元接续打分,进而利用维特比算法求解似然概率最大的路径.这种词语级别的模型无法应对 OOV(Out of Vocabulary,即未登录词) 问题: 00V在最初的全切分阶段就已经不可能进人词网了,更何谈召回. 例如下面一句: 头上戴着束发嵌宝紫金冠,齐眉勒着二龙抢珠金抹额 加粗的就是相对…
什么是熵(Entropy) 简单来说,熵是表示物质系统状态的一种度量,用它老表征系统的无序程度.熵越大,系统越无序,意味着系统结构和运动的不确定和无规则:反之,,熵越小,系统越有序,意味着具有确定和有规则的运动状态.熵的中文意思是热量被温度除的商.负熵是物质系统有序化,组织化,复杂化状态的一种度量. 熵最早来原于物理学. 德国物理学家鲁道夫·克劳修斯首次提出熵的概念,用来表示任何一种能量在空间中分布的均匀程度,能量分布得越均匀,熵就越大. 一滴墨水滴在清水中,部成了一杯淡蓝色溶液 热水晾在空气中…
隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价值.平时,经常能接触到涉及 HMM 的相关文章,一直没有仔细研究过,都是蜻蜓点水,因此,想花一点时间梳理下,加深理解,在此特别感谢 52nlp 对 HMM 的详细介绍. 考虑下面交通灯的例子,一个序列可能是红-红/橙-绿-橙-红.这个序列可以画成一个状态机,不同的状态按照这个状态机互相交替,每一个状…
http://www.zhihu.com/question/20962240 Yang Eninala杜克大学 生物化学博士 线性代数 收录于 编辑推荐 •2216 人赞同 ×××××11月22日已更新××××× 隐马尔可夫(HMM)好讲,简单易懂不好讲.我认为 @者也的回答没什么错误,不过我想说个更通俗易懂的例子.我希望我的读者不是专家,而是对这个问题感兴趣的入门者,所以我会多阐述数学思想,少写公式.霍金曾经说过,你多写一个公式,就会少一半的读者.所以时间简史这本关于物理的书和麦当娜关于性的书…
Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫. 马尔可夫链,的原理attilax总结 1. 马尔可夫过程1 1.1. 马尔科夫的应用 生成一篇"看起来像文章的随机文本".1 2. 隐马尔科夫过程1 3. 隐马模型基本要素及基本三问题2 4. 维特比算法2 5. 应用 HMM一开始是在信息论中应用的,后来才被应用到自然语言处理还有其他图像识别等各个2 6. 扩展数学之美系列十九 -- 马尔可夫链的扩展 贝叶斯网络 (Bayesian Networks)2…
文章目录 1. 1. 摘要 2. 2. Map-Matching(MM)问题 3. 3. 隐马尔科夫模型(HMM) 3.1. 3.1. HMM简述 3.2. 3.2. 基于HMM的Map-Matching 3.3. 3.3. Viterbi算法 4. 4. 相关部分论文工作 4.1. 4.1. A HMM based MM for wheelchair navigation 4.2. 4.2. MM for low-sampling-rate GPS trajectories 4.3. 4.3.…
谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google “I Love Natural Language Processing”估计就能找到)翻译后的HMM入门介绍如下,由于原文分了很多章节,我嫌慢了还是一次性整理,长文慎入吧. 一.介绍(Introduction) 我们通常都习惯寻找一个事物在一段时间里的变化模式(规律).这些模式发生在很多领域,比如计…
理论沉淀:隐马尔可夫模型(Hidden Markov Model, HMM) 参考链接:http://www.zhihu.com/question/20962240 参考链接:http://blog.csdn.net/ppn029012/article/details/8923501 本博文链接:http://www.cnblogs.com/dzyBK/p/5011727.html 1 题设 假设有n个骰子(从1~n编号),每个骰子有m面,每面标有一个数字且不重复,数字取值限制在[1,m].(1…
转自:http://blog.csdn.net/likelet/article/details/7056068 隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价值.平时,经常能接触到涉及 HMM 的相关文章,一直没有仔细研究过,都是蜻蜓点水,因此,想花一点时间梳理下,加深理解,在此特别感谢  52nlp 对 HMM 的详细介绍. 考虑下面交通灯的…
写在前面 最近在写论文过程中,研究了一些关于概率统计的算法,也从网上收集了不少资料,在此整理一下与各位朋友分享. 隐马尔可夫模型,简称HMM(Hidden Markov Model), 是一种基于概率的统计分析模型,用来描述一个系统隐性状态的转移和隐性状态的表现概率. 本文适用于对HMM感兴趣的入门读者,为了让文章更加通俗易懂,我会多阐述数学思想,尽可能的撇开公式,撇开推导.结合实际例子,争取做到雅俗共赏,童叟无欺.没有公式,就没有伤害. 建议看一下吴军博士的<数学之美>,里面有简单的说明.然…
隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价值.平时,经常能接触到涉及 HMM 的相关文章,一直没有仔细研究过,都是蜻蜓点水,因此,想花一点时间梳理下,加深理解,在此特别感谢 52nlp 对 HMM 的详细介绍. 考虑下面交通灯的例子,一个序列可能是红-红/橙-绿-橙-红.这个序列可以画成一个状态机,不同的状态按照这个状态机互相交替,每一个状…
隐马尔科夫模型HMM(一)HMM模型基础 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列(TODO) 隐马尔科夫模型(Hidden Markov Model,以下简称HMM)是比较经典的机器学习模型了,它在语言识别,自然语言处理,模式识别等领域得到广泛的应用.当然,随着目前深度学习的崛起,尤其是RNN,LSTM等神经网络序列模型的火热,HMM的地位有所下降.但是作为…
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列(TODO) 在本篇我们会讨论HMM模型参数求解的问题,这个问题在HMM三个问题里算是最复杂的.在研究这个问题之前,建议先阅读这个系列的前两篇以熟悉HMM模型和HMM的前向后向算法,以及EM算法原理总结,这些在本篇里会用到.在李航的<统计学习方法>中,这个算法的讲解只考虑了单个观测…
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列 在本篇我们会讨论HMM模型最后一个问题的求解,即即给定模型和观测序列,求给定观测序列条件下,最可能出现的对应的隐藏状态序列.在阅读本篇前,建议先阅读这个系列的第一篇以熟悉HMM模型. HMM模型的解码问题最常用的算法是维特比算法,当然也有其他的算法可以求解这个问题.同时维特比算法是一个通用的求…
本文简单整理了以下内容: (一)贝叶斯网(Bayesian networks,有向图模型)简单回顾 (二)隐马尔可夫模型(Hidden Markov model,HMM) 写着写着还是写成了很规整的样子.以后可能会修改. (一)贝叶斯网简单回顾 图模型(PGM)根据边是否有向,可以分为有向图模型和无向图模型. 待补充-- (二)隐马尔可夫模型 隐马尔可夫模型(Hidden Markov model,HMM)属于生成式模型,被广泛用于序列标注问题,在语音语言领域里比较出名的应用包括语音识别.中文分…
隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价值.平时,经常能接触到涉及 HMM 的相关文章,一直没有仔细研究过,都是蜻蜓点水,因此,想花一点时间梳理下,加深理解,在此特别感谢 52nlp 对 HMM 的详细介绍. 考虑下面交通灯的例子,一个序列可能是红-红/橙-绿-橙-红.这个序列可以画成一个状态机,不同的状态按照这个状态机互相交替,每一个状…
1 HMM基本概念1.1 定义1.2 观测序列生成过程1.3 HMM的三个问题2 概率计算算法2.1 直接计算算法2.2 前向算法forward algorithm2.3 后向算法2.4 一些概率与期望值的计算3 学习算法3.1 监督学习3.2 非监督学习--Baum-Welch算法3.3 Baum-Welch模型参数估计公式4 预测算法4.1 近似算法4.2 维特比算法Viterbi algorithm 隐马尔可夫模型(hidden Markov model,HMM)是可用于标注问题的统计学习…
http://blog.csdn.net/pipisorry/article/details/50722178 隐马尔可夫模型 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程,是在被建模的系统被认为是一个马尔可夫过程与未观测到的(隐藏的)的状态的统计马尔可夫模型. 在正常的马尔可夫模型中,状态对于观察者来说是直接可见的.这样状态的转换概率便是全部的参数.[马尔科夫模型HMM概述] 而在隐马尔可夫模型中,状态并不是直接可见的…
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项(算法过程,调参等注意事项) 5.实现和具体例子 6.适用场合 内容: 1.算法概述 隐马尔科夫模型(Hidden Markov Model)是关于时序的概率模型,描述由一个隐含的马尔科夫链生成不可观测的状态序列,再由状态序列生成观测序列的过程.这种通过观测序列预测隐含的标记序列的问题叫做标注. 下图来自维基百科: 并且本文有如下符号表示: 其中就是我们需要求得的一个三元组:拿中文分词的例子来说,分词中的状态序列是{ Begi…
1. HMM背景 0x1:概率模型 - 用概率分布的方式抽象事物的规律 机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测. 概率模型(probabilistic model)提供了一种描述框架,将学习任务归结于计算未知变量的概率分布,而不是直接得到一个确定性的结果. 在概率模型中,利用已知变量推测未知变量的分布称为“推断(inference)”,其核心是如何基于可观测变量推测出未知变量的条件分布. 具体来说,假定所关心的变量集合为…
在中文标注时,除了条件随机场(crf),被提到次数挺多的还有隐马尔可夫(HMM),通过对<统计学习方法>一书的学习,我对HMM的理解进一步加深了. 第一部分 介绍隐马尔可夫 隐马尔可夫模型是马尔可夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生. 这样一说可能会有点复杂,给个例子可能会好一点.就拿我们读初高中时的概率问题来作为例子吧. 已知有一个密度均匀的六面色子,能掷出…
HMM简介   对于算法爱好者来说,隐马尔可夫模型的大名那是如雷贯耳.那么,这个模型到底长什么样?具体的原理又是什么呢?有什么具体的应用场景呢?本文将会解答这些疑惑.   本文将通过具体形象的例子来引入该模型,并深入探究隐马尔可夫模型及Viterbi算法,希望能对大家有所启发.   隐马尔可夫模型(HMM,hidden Markov model)是可用于标注问题的统计学模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型.HMM模型在实际的生活和生产中有着广泛的应用,包括语音识别,自…