杨辉三角之c实现任意行输出】的更多相关文章

#include<stdio.h> #include<stdlib.h> int** fmalloc(int n){ int** array; //二维指针 int i; array = (int** )malloc(sizeof(int*) * n); //先分配第1维,再循环分配第2维 for(i=0; i<n; ++i){ array[i] = (int*)malloc(sizeof(int*) * (i+1)); } return array; } int main(…
前提:端点的数为1. 每个数等于它上方两数之和. 每行数字左右对称,由1开始逐渐变大. 第n行的数字有n项. 第n行数字和为2n-1. 第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数. 第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一. 每个数字等于上一行的左右两个数字之和.可用此性质写出整个杨辉三角.即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一.即 C(n+1,i)=C(n,i)+C(n,i-1).…
这是杭电hdu上杨辉三角的链接:http://acm.hdu.edu.cn/showproblem.php?pid=2032  Problem Description: 还记得中学时候学过的杨辉三角吗?具体的定义这里不再描述,你可以参考以下的图形: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1    Input: 输入数据包含多个测试实例,每个测试实例的输入只包含一个正整数n(1<=n<=30),表示将要输出的杨辉三角的层  数.    Output:…
概述:    中国古代数学家在数学的许多重要领域中处于遥遥领先的地位.中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页.杨辉三角形,是二项式系数在三角形中的一种几何排列.杨辉三角图: 杨辉三角性质:1.每行数字左右对称,由1开始逐渐变大,然后变小,回到1. 2.第n行的数字个数为n个. 3.第n行数字和为2^(n-1).(2的(n-1)次方) 4.每个数字等于上一行的左右两个数字之和.5.将第2n+1行第1个数,跟第2n+2行第3个数.第2n+3行第5个数……连成一线,…
杨辉三角的定律 第n行m列元素通项公式为: C(n-1,m-1)=(n-1)!/[(m-1)!(n-m)!] 需要用到创建二维数组 package com.glut.demo; /** * 杨辉三角 * @author qichunlin * */ public class demo3 { public static void main(String[] args) { int triangle[][]=new int[10][];// 创建二维数组 // 遍历二维数组的第一层 for (int…
---恢复内容开始--- 瞬间移动 Accepts: 1018 Submissions: 3620 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右下方格子,并瞬移过去(如从下图中的红色格子能直接瞬移到蓝色格子),求到第nnn行第mmm列的格子有几种方案,答案对100…
直接斐波那契... #include<stdio.h> #include<queue> #include<string.h> #include<iostream> #include<algorithm> using namespace std; typedef long long LL; const int INF=0x3f3f3f3f; const LL mod=1e9+7; LL a[1010]; int main() { a[1]=1; a…
杨辉三角是美丽的数学结晶,其结论往往多蕴含自然之美. ——以下内容均摘抄自题解. 例题: 洛谷P1762  偶数 正如这题所示,数据在n<=10^15的范围内则引导我们去寻找空间更节省,速率更高效的算法. 首先,很明显,杨辉三角之特点在于其行数即等于每行的数字数.因此,可以很容易使用求和公式求出1到n行一共有多少个数字. 其次,通过观察,可以发现,奇数个数比偶数个数更有规律,其规律在于: 每行奇数个数一定为2^k(k为自然数) 当行数恰为2^k(k为自然数)时,奇数个数为2^k,偶数个数为零 当…
杨辉三角的实现 一.什么是杨辉三角 杨辉三角是二项式系数在三角形中的一种几何排列.每个数等于它上方两数之和.每行数字左右对称,由1开始逐渐变大.第n行的数字有n项.前n行共[(1+n)n]/2 个数. 杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理.例如在杨辉三角中,第3行的三个数恰好对应着两数和的平方的展开式的每一项的系数,第4行的四个数恰好依次对应两数和的立方的展开式的每一项的系数,即(a+b)³=a³+3a²b+3ab²+b³,以此类推,杨辉三角是最常见的算法便是用上一行递…
问题描述: 算法基础_递归_求杨辉三角第m行第n个数字(m,n都从0开始) 解题源代码(这里打印出的是杨辉三角某一层的所有数字,没用大数,所以有上限,这里只写基本逻辑,要符合题意的话,把循环去掉就好): import java.util.Scanner; /** * 求杨辉三角第m层第n个数字 * @author Administrator * */ public class Demo05 { public static int f(int m,int n) { if(n==0)return 1…