【HDOJ】5632 Rikka with Array】的更多相关文章

1. 题目描述$A[i]$表示二级制表示的$i$的数字之和.求$1 \le i < j \le n$并且$A[i]>A[j]$的$(i,j)$的总对数. 2. 基本思路$n \le 10^300$.$n$这么大,显然只能用数位DP来做,我们可以预先处理一下将$n$表示成二进制,然后再进行DP.$dp[i][j][k]$表示长度为i,两者$A$的差为$j$,状态为$k$的总数.不妨令$|n| = l$,因此$j \in [-l, l]$,因此需要$+l$,将$j$映射到$[0,l*2]$上.在考…
/* 1002 */ #include <iostream> #include <string> #include <map> #include <queue> #include <set> #include <stack> #include <vector> #include <algorithm> #include <cstdio> #include <cmath> #include…
[转]python之模块array >>> import array#定义了一种序列数据结构 >>> help(array) #创建数组,相当于初始化一个数组,如:d={},k=[]等等 array(typecode [, initializer]) -- create a new array #a=array.array('c'),决定着下面操作的是字符,并是单个字符 #a=array.array('i'),决定着下面操作的是整数 | Attributes: | |…
[题解]CF718C Sasha and Array 对于我这种喜欢写结构体封装起来的选手这道题真是太对胃了\(hhh\) 一句话题解:直接开一颗线段树的矩阵然后暴力维护还要卡卡常数 我们来把\(2 \times 2\)看做之后时间复杂度就是\(O(nlogn)\). 写了一点点这种线段树维护除了数字之外的东西的题目,一个最大的感受就是递归用\(void\),传答案什么的一个全局变量,这样比较快. 需要注意的点是\(lazy \ \ tag\)要随着\(seg\)一起初始化一下. #includ…
题目描述:两句话发人深思啊.... Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1, b1), (a2, b2), ..., (an, bn) which makes sum of min(ai, bi) for all i from 1 to n as large as possible. 感觉题目的大致意思就是把数组分成很多个二元数组,对它…
[说明] B2开始到B?(中间不能有空格),定义一维数组Arr_approver() Dim R_sh As Worksheet Set R_sh = ThisWorkbook.Sheets("result") approver_row = R_sh.Range("B2").End(xlDown).Row Arr_approver = R_sh.Range()) For k = LBound(Arr_approver) To UBound(Arr_approver)…
其实是求树上的路径间的数据第K大的题目.果断主席树 + LCA.初始流量是这条路径上的最小值.若a<=b,显然直接为s->t建立pipe可以使流量最优:否则,对[0, 10**4]二分得到boundry,使得boundry * n_edge - sum_edge <= k/b, 或者建立s->t,然后不断extend s->t. /* 4729 */ #include <iostream> #include <sstream> #include <…
DP/四边形不等式 裸题环形石子合并…… 拆环为链即可 //HDOJ 3506 #include<cmath> #include<vector> #include<cstdio> #include<cstring> #include<cstdlib> #include<iostream> #include<algorithm> #define rep(i,n) for(int i=0;i<n;++i) #define…
DP/四边形不等式 这题跟石子合并有点像…… dp[i][j]为将第 i 个点开始的 j 个点合并的最小代价. 易知有 dp[i][j]=min{dp[i][j] , dp[i][k-i+1]+dp[k+1][j-(k-i+1)]+w(i,k,j)} (这个地方一开始写错了……) 即,将一棵树从k处断开成(i,k)和(k+1,i+j-1)两棵树,再加上将两棵树连起来的两条树枝的长度w(i,k,j) 其中,$ w(i,k,j)=x[k+1]-x[i]+y[k]-y[i+j-1] $ 那么根据四边形…
DP/四边形不等式 要求将一个可重集S分成M个子集,求子集的极差的平方和最小是多少…… 首先我们先将这N个数排序,容易想到每个自己都对应着这个有序数组中的一段……而不会是互相穿插着= =因为交换一下明显可以减小极差 然后……直接四边形不等式上吧……这应该不用证明了吧? MLE了一次:这次的w函数不能再开数组去存了……会爆的,直接算就行了= =反正是知道下标直接就能乘出来. 数据比较弱,我没开long long保存中间结果居然也没爆……(只保证最后结果不会爆int,没说DP过程中不会……) //H…