过拟合: Overfitting就是指Ein(在训练集上的错误率)变小,Eout(在整个数据集上的错误率)变大的过程 Underfitting是指Ein和Eout都变大的过程 从上边这个图中,虚线的左侧是underfitting,右侧是overfitting,发生overfitting的主要原因是:使用过于复杂的模型,数据噪音,有限的训练集 机器学习过程中的三个锦囊妙计 Occam's Razor:指的是对训练数据最简单的解释就是最好的,训练的模型可能越简单越好. Sampling Bias:抽…
如下图所示(回归的过拟合问题):如果机器学习得到的回归为下图中的直线则是比较好的结果,但是如果进一步控制减少误差,导致机器学习到了下图中的曲线,则100%正确的学习了训练数据,看似较好,但是如果换成另外一批数据,则不能较好的反应数据,造成过大的误差,这就是过拟合问题 再看下图这是分类问题的过拟合问题 2. 正规化方法 (1)l1正规化:使用权重绝对值和的方式惩罚误差 (2)l2正规化:使用权重平方和的方式惩罚误差 3. 代码实现: from __future__ import print_fun…
过拟合: 真实的应用中,并不是让模型尽量模拟训练数据的行为,而是希望训练数据对未知做出判断. 模型过于复杂后,模型会积极每一个噪声的部分,而不是学习数据中的通用 趋势.当一个模型的参数比训练数据还要多的时候,这个模型就可以记忆这个所以训练数据的结果,而使损失函数为0. 避免过拟合的常用方法:正则化.在损失函数中加入刻画模型复杂程度的指标.损失函数: J(θ) 引入正则化损失:J(θ)+λR(ω) λ代表模型复杂损失在总损失的比列,R(ω)刻画的是模型的复杂程度. 模型的复杂程度由权重决定,一般.…
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 4.正则化与过拟合问题 Regularization/The Problem of Overfitting 1 过拟合问题 The problem of overfitting 首先,Andrew Ng还是对之前几节中提到过的房屋面积-房价问题进…
1. 偏差与方差 - 机器学习算法泛化性能分析 在一个项目中,我们通过设计和训练得到了一个model,该model的泛化可能很好,也可能不尽如人意,其背后的决定因素是什么呢?或者说我们可以从哪些方面去改进从而使下次得到的model更加令人满意呢? ”偏差-方差分解(bias-variance decomposition)“是解释学习算法泛化能力性能的一种重要工具.偏差-方差分解试图对学习算法的期望泛化错误率进行拆解. 假设测试样本为x,yd 为 x 在数据集中的标记(注意,有可能出现噪声使得 y…
到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fitting)的问题,可能会导致它们效果很差. 在这段视频中,我会解释什么是过度拟合问题,并且在此之后接下来的几个视频中,我们将谈论一种称为正则化(regularization)的技术,它可以改善或者减少过度拟合问题.如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集(代价函数可能几乎为0),但是可能会不能推…
Overfitting & Regularization The Problem of overfitting A common issue in machine learning or mathematical modeling is overfitting, which occurs when you build a model that not only captures the signal but also the noise in a dataset. Because we want…
Logistic regression is a method for classifying data into discrete outcomes. For example, we might use logistic regression to classify an email as spam or not spam. In this module, we introduce the notion of classification, the cost function for logi…
这次根据结合Google的翻译果然速度快上许多,暂时休息,晚上在传一个exm2的随笔. 关于过度拟合下的问题 考虑从x∈R预测y的问题,下面的最左边的图显示了将\(y=\theta_0+\theta_1x\)拟合到数集的结果,我们看到数据不是真的在直线上,所以适合度不是很好. 相反,如果我们添加了一个额外的特征\(x^2\),并且拟合\(y=\theta_0+\theta_1x+\theta_2x^2\),那么我们获得一个稍微更好的拟合数据(见中图). 哈哈,这时候是不是我们添加的功能越多越好呢…
我们将讨论逻辑回归. 逻辑回归是一种将数据分类为离散结果的方法. 例如,我们可以使用逻辑回归将电子邮件分类为垃圾邮件或非垃圾邮件. 在本模块中,我们介绍分类的概念,逻辑回归的损失函数(cost functon),以及逻辑回归对多分类的应用. 我们还涉及正规化. 机器学习模型需要很好地推广到模型在实践中没有看到的新例子. 我们将介绍正则化,这有助于防止模型过度拟合训练数据. Classification 分类问题其实和回归问题相似,不同的是分类问题需要预测的是一些离散值而不是连续值. 如垃圾邮件分…
本节讲的是机器学习中出现的过拟合(overfitting)现象,以及解决过拟合的一些方法. 机器学习模型的自负又表现在哪些方面呢. 这里是一些数据. 如果要你画一条线来描述这些数据, 大多数人都会这么画. 对, 这条线也是我们希望机器也能学出来的一条用来总结这些数据的线. 这时蓝线与数据的总误差可能是10. 可是有时候, 机器过于纠结这误差值, 他想把误差减到更小, 来完成他对这一批数据的学习使命. 所以, 他学到的可能会变成这样 . 它几乎经过了每一个数据点, 这样, 误差值会更小 . 可是误…
python风控建模实战lendingClub(博主录制,包含大量回归建模脚本和和正则化解释,2K超清分辨率) https://study.163.com/course/courseMain.htm?courseId=1005988013&share=2&shareId=400000000398149 微信扫二维码,免费学习更多python资源 转载http://blog.csdn.net/u013363719/article/details/22752893 http://www.cnb…
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:t…
3. Bayesian statistics and Regularization Content 3. Bayesian statistics and Regularization. 3.1 Underfitting and overfitting. 3.2 Bayesian statistics and regularization. 3.3 Optimize Cost function by regularization. 3.3.1 Regularized linear regressi…
ps:转的.当时主要是看到一个问题是L1 L2之间有何区别,当时对l1与l2的概念有些忘了,就百度了一下.看完这篇文章,看到那个对W减小,网络结构变得不那么复杂的解释之后,满脑子的6666-------->把网络权重W看做为对上一层神经元的一个WX+B的线性函数模拟一个曲线就好.知乎大神真的多. 版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   本文是<Neural networks and deep learning>概览 中第三章的一部分,讲机器学习/深…
1. The Problem of Overfitting 1 还是来看预测房价的这个例子,我们先对该数据做线性回归,也就是左边第一张图. 如果这么做,我们可以获得拟合数据的这样一条直线,但是,实际上这并不是一个很好的模型.我们看看这些数据,很明显,随着房子面积增大,住房价格的变化趋于稳定或者说越往右越平缓.因此线性回归并没有很好拟合训练数据. 我们把此类情况称为欠拟合(underfitting),或者叫作叫做高偏差(bias). 这两种说法大致相似,都表示没有很好地拟合训练数据.高偏差这个词是…
原文链接:https://developers.google.com/machine-learning/crash-course/regularization-for-simplicity 正则化指的是降低模型的复杂度以减少过拟合. 1- L₂正则化 泛化曲线:显示的是训练集和验证集相对于训练迭代次数的损失. 如果说某个模型的泛化曲线显示:训练损失逐渐减少,但验证损失最终增加.那么就可以说,该模型与训练集中的数据过拟合.根据奥卡姆剃刀定律,或许可以通过降低复杂模型的复杂度来防止过拟合,这种原则称…
L1&L2 Regularization   正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器…
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:t…
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:t…
此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探讨. 课程网址:https://www.coursera.org/learn/machine-learning/home/welcome Week 2:Linear Regression with Multiple Variables笔记:http://blog.csdn.net/ironyoung…
7.1 过拟合的问题 到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fitting)的问题,可能会导致它们效果很差. 在这段视频中,我将为你解释什么是过度拟合问题,并且在此之后接下来的几个视频中,我们将谈论一种称为正则化(regularization)的技术,它可以改善或者减少过度拟合问题. 如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集(代价函数可能…
The Problem of Overfitting 如果有太多的 features,假设可能与训练数据太匹配了以致于预测未来的数据不准确.如下图: 解决 overfitting 1. 既然是由太多的 features 引起的,那么就排除一些 features 2. Regularization 不变动 features,因为 features 也是带有信息的,但是减少 θj 的数量级 Regularization Cost Function Regularization 各个 θ 的参数越小,…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1 训练/开发/测试集 对于一个数据集而言,可以将一个数据集分为三个部分,一部分作为训练集,一部分作为简单交叉验证集(dev)有时候也成为验证集,最后一部分作为测试集(test).接下来我们开始对训练集执行训练算法,通过验证集或简单交叉验证集选择最好的模型.经过验证我们选择最终的模型,然后就可以在测试集上进行评估了.在机器学习的小数据量时代常见的做法是将所有数据三七分,就是人们常说的70%训练集集,30%测试集,如果设置有验证集,我们可…
过拟合(over-fitting) 欠拟合 正好 过拟合 怎么解决 1.丢弃一些不能帮助我们正确预测的特征.可以是手工选择保留哪些特征,或者使用一 些模型选择的算法来帮忙(例如 PCA) 2.正则化. 保留所有的特征,但是减少参数的大小(magnitude) 回归问题的模型是 是高次项导致了这个问题 我们决定要减少…
1. Setting up your Machine Learning Application 1.1 训练,验证,测试集(Train / Dev / Test sets) 1.2 Bias/Variance(偏差和方差) 高偏差(high bias)称为"欠拟合"(underfitting), 练集误差与验证集误差都高. 高方差(high variance)称为过拟合(overfitting), 训练集误差很低而验证集误差很高. 1.3 Basic "recipe"…
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep Learning models have so much flexibility and capacity that overfitting can be a serious problem, if the training dataset is not big enough. Sure it do…
参考: L1 Norm Regularization and Sparsity Explained for Dummies 专为小白解释的文章,文笔十分之幽默 why does a small L1 norm give a sparse solution? why does a sparse solution avoid over-fitting? what does regularization do really? 减少feature的数量可以防止over fitting,尤其是在特征比样本…
主要内容: 一.欠拟合和过拟合(over-fitting) 二.解决过拟合的两种方法 三.正则化线性回归 四.正则化logistic回归 五.正则化的原理 一.欠拟合和过拟合(over-fitting) 1.所谓欠拟合,就是曲线没能很好地拟合数据集,一般是由于所选的模型不适合或者说特征不够多所引起的. 2.所谓过拟合,就是曲线非常好地拟合了数据集(甚至达到完全拟合地态度),这貌似是一件很好的事情,但是,曲线千方百计地去“迎合”数据集,就导致了其对其他数据的预测性或者说通用性不高.这就好像,期末考…
Learning curve 检视过拟合 sklearn.learning_curve 中的 learning curve 可以很直观的看出我们的 model 学习的进度, 对比发现有没有 overfitting 的问题. 然后我们可以对我们的 model 进行调整, 克服 overfitting 的问题. # View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutoria…