解析: 评:两根式是不错的考虑方向,一方面二次函数两根式之前有相应的经验,另一方面这里$\sqrt{\frac{b^2}{4}-c}$正好和两个根有关系.…
评:这类与正整数有关的题,是很多学生所不习惯以及无从下手的.事实上很多时候要用到整数的这个性质:$m>n,m,n\in Z$则$m\ge n+1$,这道题用二次函数区间上有根的一般做法也可以,大致是这样:…
已知$x_1^2+x_2^2+\cdots+x_6^2=6,x_1+x_2+\cdots+x_6=0,$证明:$x_1x_2\cdots x_6\le\dfrac{1}{2}$ 解答:显然只需考虑2个非负4个非正(或者2非正4非负)的情况.不妨设$x_1,x_2\ge0;x_3,x_4,x_5,x_6\le0$,记$a_1=x_1,a_2=x_2,a_k=-x_k (k=3,4,5,6)$则题目变为已知$a_1^2+a_2^2+a_3^2+a_4^2+a_5^2+a_6^2=6,a_1+a_2=…
已知直线$l:x+y-\sqrt{3}=0$过椭圆$E:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1,(a>b>0)$的右焦点且与椭圆$E$交于$A,B$两点,$P$为$AB$中点,$OP$的斜率为$\dfrac{1}{2}$.(1)求椭圆$E$的方程;(2)设$CD$是椭圆$E$的动弦,且其斜率为$1$,问椭圆$E$上是否存在定点$Q$,使得直线$QC,QD$的斜率分别为$k_1,k_2$满足$k_1+k_2=0?$若存在,求出$Q$的坐标;若不存在,请说明理由.…
已知$z_1=2\sqrt{3}i,z_2=3,z_3=-3,|z_3-z_4|=2\sqrt{3},$则$|z_1-z_4|+|z_2-z_4|$的最小值为_____ 提示:费马点最小,取$Z_4(0,\sqrt{3})$为$\Delta Z_1Z_2Z_3$的费马点. 此时$|z_3-z_4|=2\sqrt{3}$故$|z_1-z_4|+|z_2-z_4|\ge3\sqrt{3}$注:只有这些很对称特殊的点的费马点可以坐标写出,一般的已知三个点的坐标求费马点的坐标的公式没有. 练习:设$z$…
已知${a_n}$满足$a_1=1,a_{n+1}=(1+\frac{1}{n^2+n})a_n.$证明:当$n\in N^+$时, $(1)a_{n+1}>a_n.(2)\frac{2n}{n+1}\le a_n\le \frac{en}{n+1}$ 评:当然也可以按参考答案由数学归纳法证明.…
题意:给两个人一些棋子,每个棋子有其对应的power,若b没有或者c没有,或者二者都没有,那么他的total power就会减1,total power最少是1,求最后谁能赢 如果b或c出现的话,flag就标记为1,那么在判断的时候如果flag==0,就说明他们没出现过,那么就要-1,然后就wa了,必须要两个变量判断,不知道为什么 #include<cstdio> #include<iostream> #include<algorithm> #include<cs…
题意:一些小伙伴之间有朋友关系,比如a和b是朋友,b和c是朋友,a和c不是朋友,则a和c之间存在朋友链,且大小为2,给出一些关系,求出这些关系中最大的链是多少? 求最短路的最大距离 #include<cstdio> #include<iostream> #include<algorithm> #include<cstring> #include<cmath> #include<queue> #include<map> us…
题目:给出K个数,使得这K个数的和为N,LCM为M,问有多少种 f[i][j][k]表示选i个数,总和为j,最小公倍数为k memery卡的比较紧,注意不要开太大,按照题目数据开 这种类型的dp也是第一次做 #include<cstdio> #include<iostream> #include<algorithm> #include<cstring> #include<cmath> #include<queue> #include&…
在平面上有\(n\) 个点$S={x_1,x_2\cdots,x_n}, $ 其中任意两个点之间的距离至少为 \(1\), 证明在这 \(n\) 个点中距离为 \(1\)的点对数不超过 \(3n\). 证明: 如果两点间距离为 1 则相连,所以要求距离为 1 的点对数就是图 G 中的边数.我们只需证明:边数\(|E|\le 3n\) 考虑图G中每个点的度,考虑到与点\(v_k,(k=1,2,\cdots ,n)\)相连的点都在单位圆上,所以\(d(v_k)\le 6\) 结合\(2|E|=\su…