题目链接:洛谷 这道题看起来是个期望题,但是其实是一道计算几何(这种题太妙了) 首先有一个很好的结论,在一个长度为$L$的数轴上,每次从$x$处出发,不停地走,有$\frac{x}{L}$的概率从右端点掉下去,$\frac{L-x}{L}$从左端点掉下去. 这个证明的话,感性理解一下. 令$l_x$表示从$x$处掉到左端点的概率,则$l_0=1,l_L=0$,且对于$x\in (0,L)$,$l_x=\frac{l_{x-1}+l_{x+1}}{2}$,所以$l_x$构成一个等差数列,所以得证.…