Luogu2183 礼物 ExLucas、CRT】的更多相关文章

传送门 证明自己学过exLucas 这题计算的是本质不相同的排列数量,不难得到答案是\(\frac{n!}{\prod\limits_{i=1}^m w_i! \times (n - \sum\limits_{i=1}^m w_i)!}\) 但是模数不一定是质数,于是用exLucas计算即可. #include<bits/stdc++.h> #define int long long //This code is written by Itst using namespace std; int…
2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1450  Solved: 593[Submit][Status][Discuss] Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼物,打算送给m个人,其中送给第i个人礼物数量为wi.请你帮忙计算出送礼物的方案数(两个方…
[BZOJ2142]礼物 Description 小E从商店中购买了n件礼物,打算送给m个人,其中送给第i个人礼物数量为wi.请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某个人在这两种方案中收到的礼物不同).由于方案数可能会很大,你只需要输出模P后的结果. Input 输入的第一行包含一个正整数P,表示模: 第二行包含两个整整数n和m,分别表示小E从商店购买的礼物数和接受礼物的人数: 以下m行每行仅包含一个正整数wi,表示小E要送给第i个人的礼物数量. Output 若不存…
题目传送门(内部题6) 输入格式 第一行包含两个整数$T$,$MOD$:第二行包含两个整数$n$,$m$,表示$dirty$房子的位置. 输出格式 一行一个整数,表示对$MOD$取模之后的答案. 样例 样例输入: 4 10 2 2 样例输出: 数据范围与提示 对于$30\%$的数据,$T \leqslant 100$:对于另外$30\%$的数据,$MOD$为质数:对于全部数据,$1 \leqslant T \leqslant 100,000;-T \leqslant n,m \leqslant…
无聊的计算姬 Time Limit: 10 Sec  Memory Limit: 256 MB Description Input Output Sample Input 6 2 2 3 4 3 2 7 9 2 1 2 9 3 1 6 7 1 5 3 7 1 9 2 8 Sample Output Math Error 3 Math Error 6 6 1 HINT Solution 我们可以分步骗分.(Task1直接快速幂即可.) 对于前50分: 对于Task2,我们直接暴力枚举,出现一个重复…
BZOJ_2142_礼物_扩展lucas+组合数取模 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼物,打算送给m个人 ,其中送给第i个人礼物数量为wi.请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某 个人在这两种方案中收到的礼物不同).由于方案数可能会很大,你只需要输出模P后的结果. Input 输入的第一…
CRT 解同余方程,形如\(x \equiv c_i \ mod \ m_i\),我们对每个方程构造一个解满足: 对于第\(i\)个方程:\(x \equiv 1 \ mod \ m_i\),\(x \equiv \ 0 \ mod \ m_j\)\((j!=i)\) 最后\(ans=\sum{x_i*c_i}\ mod \ M\) 其中\(M=\prod m_i\) 考虑构造\(x_i\),我们解同余方程\(\frac{M}{m_i}x\equiv 1\ mod \ m_i\) 所以\(x\)…
中国剩余定理 中国剩余定理,Chinese Remainder Theorem,又称孙子定理,给出了一元线性同余方程组的有解判定条件,并用构造法给出了通解的具体形式. \[ \begin{aligned} &现在有方程组:\\ &(S):\begin{cases} x\equiv a_1(mod\space m_1)\\ x\equiv a_2(mod\space m_2)\\ \space\space\space\space. \\ \space\space\space\space. \…
算是一道很毒瘤的题目 考试的时候码+调了3h才搞定. op==1 显然是快速幂. op==2 有些点可以使用BSGS 不过后面的点是EXBSGS. 这个以前学过了 考试的时候还是懵逼.(当时还是看着花姐姐的题解学的 为了起到再次复习的作用 我决定 再推导一遍. 对于高次同余方程 \(a^x\equiv b(mod p)\) 朴素的BSGS利用是欧拉定理的应用解决的.此时要求(a,p)=1. 考虑解决(a,p)>1的情况 容易发现我们进行一些操作 使得他们互质就可以继续使用EXBSGS了. 当b%…
题面 题解 易得答案为 $$ \sum_{i=1}^m\binom{n-\sum_{j=1}^{i-1}w_j}{\sum_{j=1}^iw_j} $$ 扩展$\text{Lucas}$即可 代码 #include<cstdio> #include<cstring> #include<cctype> #include<algorithm> #define RG register #define file(x) freopen(#x".in"…