hdu 1956(混合图的欧拉回路)】的更多相关文章

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1956 思路:先将无向边定向,比如1<->3,可以定它的方向为1->3,1的出度++,3的入度++即可.读入的时候如果遇到无向边,把这条边加入待建的网络中,流量为1.读入完后,然后用出度减入度得到x,如果x为奇数,肯定不存在欧拉回路,如果没有奇数,就用最大流求解. 如果x大于0,则建一条s(源点)到当前点容量为x/2的边,如果x小于0,建一条从当前点到 t(汇点)容量为|x/2|的边.然后求最…
传送门 这篇题解讲的真吼->这里 首先我们可以二分一个答案,然后把所有权值小于这个答案的都加入图中 那么问题就转化为一张混合图(既有有向边又有无向边)中是否存在欧拉回路 首先 无向图存在欧拉回路,当且仅当图的所有顶点度数都为偶数且图连通.        有向图存在欧拉回路,当且仅当图的所有顶点入度等于出度且图连通. 那么我们怎么判断混合图的欧拉回路是否存在呢? 我们把无向边的边随便定向,然后计算每一个点的入度和出度.如果有某一个点的入度和出度之差是奇数,那么肯定不存在欧拉回路. 因为欧拉回路要求…
混合图的欧拉回路判定 上一篇正好分别讲了有向图和无向图的欧拉回路判定方法 如果遇上了混合图要怎么做呢? 首先我们思考有向图的判定方法:所有点的出度=入度 我们可以先为无向边任意定一个向,算出此时所有顶点的入度和出度 对于一个入度<>出度的点,我们修改与它相连的一条无向边的方向,一种可能是入度-1出度+1,一种可能是入度+1出度-1 无论如何不会改变的是其入度与出度的差一直是偶数 所以首先我们对任意定向后的整张图根据其入度与出度之差进行初步判定 有顶点入度与出度之差为奇数的图一定无法构成欧拉回路…
这道题写了两个多小时-- 首先讲一下怎么建模 我们的目的是让所有点的出度等于入度 那么我们可以把点分为两部分, 一部分出度大于入度, 一部分入度大于出度 那么显然, 按照书里的思路,将边方向后,就相当于从出度大于入度的运一个流量到 入度大于出度的点. 紫书 例题 11-13 UVa 10735(混合图的欧拉回路)(最大流) 所以我们可以把源点S到所有出度大于入度的点连一条弧, 弧的容量是出度-入度的一半 为什么容量是这样呢,等一下说 同理, 把所有入度大于出度的点和汇点T连一条弧, 弧的容量是入…
九野的博客,转载请注明出处:http://blog.csdn.net/acmmmm/article/details/13799337 题意: T个测试数据 n串字符 能否倒过来用(1表示能倒着用) 问能否把所有字符串 首尾相接 欧拉回路是图G中的一个回路,经过每条边有且仅一次,称该回路为欧拉回路.具有欧拉回路的图称为欧拉图,简称E图. 混合图就是边集中有有向边和无向边同时存在.这时候需要用网络流建模求解. 不能倒着用就是有向边,能倒着用就是无向边 http://yzmduncan.iteye.c…
//网络流判定混合图欧拉回路 //通过网络流使得各点的出入度相同则possible,否则impossible //残留网络的权值为可改变方向的次数,即n个双向边则有n次 //Time:157Ms Memory:348K #include <iostream> #include<cstring> #include<cstdio> #include<algorithm> #include<queue> using namespace std; #de…
题意:一张混合图,判断是否存在欧拉回路. 分析参考: 混合图(既有有向边又有无向边的图)中欧拉环.欧拉路径的判定需要借助网络流! (1)欧拉环的判定:一开始当然是判断原图的基图是否连通,若不连通则一定不存在欧拉环或欧拉路径(不考虑度数为0的点). 其实,难点在于图中的无向边,需要对所有的无向边定向(指定一个方向,使之变为有向边),使整个图变成一个有向欧拉图(或有向半欧拉图).若存在一个定向满足此条件,则原图是欧拉图(或半欧拉图)否则不是.关键就是如何定向? 首先给原图中的每条无向边随便指定一个方…
题意: 给出一个图,有的边是有向边,有的是无向边.试找出一条欧拉回路. 分析: 按照往常的思维,遇到混合图,我们一般会把无向边拆成两条方向相反的有向边. 但是在这里却行不通了,因为拆成两条有向边的话,就表示这个边能“在两个相反方向各经过一次”. 而题意是这个边只能经过一次. 假设图中存在欧拉回路,则所有点的出度out(i) 等于 入度in(i) 不妨这样,先将所有的无向边任意定向,对于out(u) > in(u)的点,可以将已经定向的无向边u->v反向为v->u,这样out(u) - i…
题意:给一个图,图中有部分是向边,部分是无向边,要求判断是否存在欧拉回路,若存在,输出路径. 分析:欧拉回路的定义是,从某个点出发,每条边经过一次之后恰好回到出发点. 无向边同样只能走一次,只是不限制方向而已,那么这个情况下就不能拆边.不妨先按照所给的start和end的顺序,初步定下该无向边的顺序(若不当,一会再改).那么有个问题,我们需要先判断其是否存在欧拉回路先. 混合图不满足欧拉回路因素有:(1)一个点的度(无论有无向)是奇数的,那么其肯定不能满足出边数等于入边数.(2)有向边的出入度过…
[题意] 给定n点m边的无向图,对于边u,v,从u到v边权为c,从v到u的边权为d,问能够经过每条边一次且仅一次,且最大权值最小的欧拉回路. [思路] 二分答案mid,然后切断权值大于mid的边,原图就变成了一个既有无向边又有有向边的混合图,则问题转化为求混合图上是否存在一个欧拉回路. 无向图存在欧拉回路,当且仅当图的所有顶点度数都为偶数且图连通.      有向图存在欧拉回路,当且仅当图的所有顶点入度等于初度且图连通. 一条边仅经过一次,所以无向边最终的归属就是有向边,即我们要给无向边定向使存…