[洛谷P3865]【模板】ST表】的更多相关文章

[题目描述:] 丽江河边有n 家很有特色的客栈,客栈按照其位置顺序从 1 到n 编号.每家客栈都按照某一种色调进行装饰(总共 k 种,用整数 0 ~ k-1 表示),且每家客栈都设有一家咖啡店,每家咖啡店均有各自的最低消费. 两位游客一起去丽江旅游,他们喜欢相同的色调,又想尝试两个不同的客栈,因此决定分别住在色调相同的两家客栈中.晚上,他们打算选择一家咖啡店喝咖啡,要求咖啡店位于两人住的两家客栈之间(包括他们住的客栈),且咖啡店的最低消费不超过 p . 他们想知道总共有多少种选择住宿的方案,保证…
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含三个整数N.M.P,分别表示该数列数字的个数.操作的总个数和模数. 第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值. 接下来M行每行包含3或4个整数,表示一个操作,具体如下: 操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k 操作2: 格式:…
[算法模板]ST表 ST表和线段树一样,都能解决RMQ问题(范围最值查询-Range Minimum Query). 我们开一个数组数组\(f[maxn][maxn\log_2]\)来储存数据. 定义\(f[i][j]\)代表从\(i\)开始的\(2^{j}\)位这个区间的最大值. 初始化 因为\(f[i][0]=a[i]\),所以有: \[ f[i][j]=max(f[i][j-1],f[i+2^{j-1}][j-1]) \] 通过这个转移方程即可构造出\(f\). 查询 查询区间\([l,r…
P3865 [模板]ST表 题目背景 这是一道ST表经典题——静态区间最大值 请注意最大数据时限只有0.8s,数据强度不低,请务必保证你的每次查询复杂度为 O(1)O(1) 题目描述 给定一个长度为 NN 的数列,和 MM 次询问,求出每一次询问的区间内数字的最大值. 输入输出格式 输入格式: 第一行包含两个整数 N, MN,M ,分别表示数列的长度和询问的个数. 第二行包含 NN 个整数(记为 a_iai​),依次表示数列的第 ii 项. 接下来 MM行,每行包含两个整数 l_i, r_ili…
https://www.luogu.org/problemnew/show/P3865 题目背景 这是一道ST表经典题——静态区间最大值 请注意最大数据时限只有0.8s,数据强度不低,请务必保证你的每次查询复杂度为 O(1)O(1) 题目描述 给定一个长度为 NN 的数列,和 MM 次询问,求出每一次询问的区间内数字的最大值. 输入输出格式 输入格式: 第一行包含两个整数 N, MN,M ,分别表示数列的长度和询问的个数. 第二行包含 NN 个整数(记为 a_iai​),依次表示数列的第 ii …
题目大意:区间静态最大值 题解:ST表,zkw线段树 ST表: st[i][j]存[i,i+$j^{2}$-1]的最大值,查询时把区间分成两个长度相同的小区间(可重复) #include<cstdio> #include<cctype> using namespace std; const int maxn=100010; int n,m,M; int st[maxn][20],lg[maxn]; inline int max(int a,int b){return a>b?…
我不会ST表 智推推到这个题 发现标签中居然有线段树..? 于是贸然来了一发线段树 众所周知,线段树的查询是log(n)的 题目中"请注意最大数据时限只有0.8s,数据强度不低,请务必保证你的每次查询复杂度为 O(1)" 然后草草打完代码竟然AC了..exm?? 最慢也不过400ms 数据好水 好吧,不多说上代码 首先是数据存贮,分别是左子节点,右子节点,maxx存贮当前节点的最大值 struct node{ int left,right,maxx; }tree[100000*4+10…
ST表 ST表的功能很简单 它是解决RMQ问题(区间最值问题)的一种强有力的工具 它可以做到O(nlogn)预处理,O(1)查询最值 是一种处理静态区间可重复计算问题的数据结构,一般也就求求最大最小值辣. ST表的思想是先求出每个[i, i + 2^k)的最值. 注意到这样区间的总数是O(N log N)的. 预处理 不妨令fi,j为[i, i + 2^j)的最小值. 那么首先fi,0的值都是它本身. 而fi,j = min(fi,j−1, fi+2^j−1,j−1) 这样在O(N log N)…
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类对树的边进行轻重划分的操作,这样做的目的是为了减少某些链上的修改.查询等操作的复杂度. 目前总共有三类:重链剖分,实链剖分和并不常见的长链剖分 重链剖分 实际上我们经常讲的树剖,就是重链剖分的常用称呼. 对于每个点,选择最大的子树,将这条连边划分为重边,而连向其他子树的边划分为轻边. 若干重边连接在…
ST表,稀疏表,用于求解经典的RMQ问题.即区间最值问题. Problem: 给定n个数和q个询问,对于给定的每个询问有l,r,求区间[l,r]的最大值.. Solution: 主要思想是倍增和区间dp. 状态:dp[i][j] 为闭区间[i,i+2^j-1]的最值. 这个状态与转移方程的关系很大,即闭区间的范围涉及到了转移方程的简便性. 转移方程:dp[i][j]=max(dp[i][j-1],dp[i+2^(j-1)][j-1]). 这是显然的,但这里有个细节:第一个项的范围为[i,i+2^…