聚类结果的评估指标及其JAVA实现】的更多相关文章

一. 前言 又GET了一项技能.在做聚类算法的时候,由于要评估所提出的聚类算法的好坏,于是需要与一些已知的算法对比,或者用一些人工标注的标签来比较,于是用到了聚类结果的评估指标.我了解了以下几项. 首先定义几个量:(借鉴该博客:http://blog.csdn.net/luoleicn/article/details/5350378) TP:是指被聚在一类的两个量被正确的分类了(即在标准标注里属于一类的两个对象被聚在一类) TN:是指不应该被聚在一类的两个对象被正确地分开了(即在标准标注里不是一…
在机器学习中,性能指标(Metrics)是衡量一个模型好坏的关键,通过衡量模型输出y_predict和y_true之间的某种“距离”得出的. 对学习器的泛化性能进行评估,不仅需要有效可行的试验估计方法,还需要有衡量模型泛化能力的评估价标准,这就是性能度量(performance measure).性能度量反映了任务需求,在对比不同模型的能力时,使用不同的性能度量往往会导致不的评判结果:这意味着模型的“好坏”是相对的,什么样的模型是好的,不仅取决于算法和数据,还决定于任务需求. 性能指标往往使我们…
python实现六大分群质量评估指标(兰德系数.互信息.轮廓系数) 1 R语言中的分群质量--轮廓系数 因为先前惯用R语言,那么来看看R语言中的分群质量评估,节选自笔记︱多种常见聚类模型以及分群质量评估(聚类注意事项.使用技巧): 没有固定标准,一般会3-10分群.或者用一些指标评价,然后交叉验证不同群的分群指标. 一般的指标:轮廓系数silhouette(-1,1之间,值越大,聚类效果越好)(fpc包),兰德指数rand:R语言中有一个包用30种方法来评价不同类的方法(NbClust),但是速…
为了能够更好的评价IR系统的性能,IR有一套完整的评价体系,通过评价体系可以了解不同信息系统的优劣,不同检索模型的特点,不同因素对信息检索的影响,从而对信息检索进一步优化. 由于IR的目标是在较短时间内返回较全面和准确的信息,所以信息检索的评价指标通常从三个方面考虑:效率.效果和其他如数据规模. 下面简单介绍几种常用的信息检索评价指标: 1.准确率与召回率(Precision & Recall)        精度和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量.其中精…
机器学习策略 ML strategy 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1 什么是ML策略 机器学习策略简介 情景模拟 假设你正在训练一个分类器,你的系统已经达到了90%准确率,但是对于你的应用程序来说还不够好,此时你有很多的想法去继续改善你的系统 收集更多训练数据 训练集的多样性不够,收集更多的具有多样性的实验数据和更多样化的反例集. 使用梯度下降法训练更长的时间 尝试一个不同的优化算法,例如Adam优化算法. 尝试更大的神经网络或者更小的神经网络 尝试dropout…
一.前述 怎么样对训练出来的模型进行评估是有一定指标的,本文就相关指标做一个总结. 二.具体 1.混淆矩阵 混淆矩阵如图:  第一个参数true,false是指预测的正确性.  第二个参数true,postitives是指预测的结果.  相关公式: 检测正列的效果: 检测负列的效果: 公式解释: fp_rate: tp_rate: recall:(召回率) 值越大越好 presssion:(准确率) TP:本来是正例,通过模型预测出来是正列 TP+FP:通过模型预测出来的所有正列数(其中包括本来…
一.ROC,AUC ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣 . ROC曲线一般的横轴是FPR,纵轴是FPR.AUC为曲线下面的面积,作为评估指标,AUC值越大,说明模型越好.如下图: 二.Precision.Recall.F1-score Terminology and derivationsfrom a confusion matrix true positive (TP)…
评估指标 Evaluation metrics 机器学习性能评估指标 选择合适的指标 分类与回归的不同性能指标 分类的指标(准确率.精确率.召回率和 F 分数) 回归的指标(平均绝对误差和均方误差) 混淆矩阵(confusion matricess) 一.选择合适的指标 评估模型是否得到改善,总体表现如何 在构建机器学习模型时,我们首先要选择性能指标,然后测试模型的表现如何.相关的指标有多个,具体取决于我们要尝试解决的问题. 此外,在测试模型时,也务必要将数据集分解为训练数据和测试数据.如果不区…
单一数字评估指标: 我们在平时常用到的模型评估指标是精度(accuracy)和错误率(error rate),错误率是:分类错误的样本数站样本总数的比例,即E=n/m(如果在m个样本中有n个样本分类错误),那么1-a/m就是精度.除此之外,还会有查准率和查全率,下面举例解释. 按照周志华<机器学习>中的例子,以西瓜问题为例. 错误率:有多少比例的西瓜被判断错误: 查准率(precision):算法挑出来的西瓜中有多少比例是好西瓜: 查全率(recall):所有的好西瓜中有多少比例被算法跳了出来…
混淆矩阵 精准率/查准率,presicion 预测为正的样本中实际为正的概率 召回率/查全率,recall 实际为正的样本中被预测为正的概率 TPR F1分数,同时考虑查准率和查全率,二者达到平衡,=2*查准率*查全率/(查准率+查全率) 真正率 = 灵敏度 sensitivity 召回率 TP/TP+FN ,只关注正样本中有多少被准确预测 假正率 = 1- 特异度 = FP/(FP+TN),有多少负样本被错误预测   在正负样本足够的情况下,可以用ROC曲线.AUC.KS评价模型区分能力和排序…
本文主要对 Spark ML库下模型评估指标的讲解,以下代码均以Jupyter Notebook进行讲解,Spark版本为2.4.5.模型评估指标位于包org.apache.spark.ml.evaluation下. 模型评估指标是指测试集的评估指标,而不是训练集的评估指标 1.回归评估指标 RegressionEvaluator Evaluator for regression, which expects two input columns: prediction and label. 评估…
一.分类评估指标 准确率(最直白的指标)缺点:受采样影响极大,比如100个样本中有99个为正例,所以即使模型很无脑地预测全部样本为正例,依然有99%的正确率适用范围:二分类(准确率):二分类.多分类(平均准确率) from sklearn.metrics import accuracy_score y_pred = [0, 2, 1, 3] y_true = [0, 1, 2, 3] accuracy_score(y_true, y_pred) 0.5 accuracy_score(y_true…
开始之前 我们在将 opencv 的图像显示在了 qt 的label 上, 我们能够将图显示在label 上, 用于显示我们的算法, 我们在 opencv 上一篇文章中介绍了 opencv 的核操作, 我们这里就要进入一个很重要的章节了,图像滤波操作, 也是图像核操作应用的一个很重要的章节, 那我们就从降噪的角度完整的讲一下, 并通过 opencv 核的方式进行图像算法操作, [技术综述]一文道尽传统图像降噪方法 这篇文章写的还算比较完整, 也是传统的算法的一个综述过程, 目录 目录 开始之前…
1. Model Log 介绍 Model Log 是一款基于 Python3 的轻量级机器学习(Machine Learning).深度学习(Deep Learning)模型训练评估指标可视化工具,与 TensorFlow.Pytorch.PaddlePaddle结合使用,可以记录模型训练过程当中的超参数.Loss.Accuracy.Precision.F1值等,并以曲线图的形式进行展现对比,轻松三步即可实现. 通过调节超参数的方式多次训练模型,并使用 Model Log 工具进行记录,可以很…
仿照上篇博文对于混淆矩阵.ROC和AUC指标的探讨,本文简要讨论机器学习二分类问题中的混淆矩阵.PR以及AP评估指标:实际上,(ROC,AUC)与(PR,AP)指标对具有某种相似性. 按照循序渐进的原则,依次讨论混淆矩阵.PR和AP: 设定一个机器学习问题情境:给定一些肿瘤患者样本,构建一个分类模型来预测肿瘤是良性还是恶性,显然这是一个二分类问题. 本文中,将良性肿瘤视为正类标签(可能在具体实践中更为关注恶性肿瘤,不过这并不影响技术上的操作). 当分类模型选定以后,将其在测试数据集上进行评估,分…
此翻译纯属个人爱好,由于水平所限,翻译质量可能较低.网络上可能存在其它翻译版本,原文地址:http://blog.jooq.org/2013/08/26/silly-metrics-the-most-used-java-keywords/ 英文原文:Silly Metrics: The Most Used Java Keywords 翻译正文: 告诉我: 难道你从来没有对你使用“synchronized”的次数感到疑惑? 你没有过对不使用“do{}while{}”循环结构而感到担忧? 你是一个使…
update:2018-04-07 今天发现ssim的计算里面有高斯模糊,为了快速计算,先对每个小块进行计算,然后计算所有块的平均值.可以参考源代码实现,而且代码实现有近似的在里面!matlab中中图像PSNR和SSIM的计算 “在实际应用中,可以利用滑动窗将图像分块,令分块总数为N,考虑到窗口形状对分块的影响,采用高斯加权计算每一窗口的均值.方差以及协方差,然后计算对应块的结构相似度SSIM,最后将平均值作为两图像的结构相似性度量,即平均结构相似性MSSIM” 两种常用的全参考图像质量评价指标…
转载请注明出处:http://www.cnblogs.com/bethansy/p/6890972.html 一.已知真实社区划分结果 1.NMI指数,互信息和标准化互信息 具体公式和matlab代码参见博客,Python代码参加,C++代码参见 function MIhat = nmi( A, B ) %NMI Normalized mutual information % http://en.wikipedia.org/wiki/Mutual_information % http://nlp…
# -*- coding: utf-8 -*- """ Created on Mon Sep 10 11:21:27 2018 @author: zhen """ from sklearn.datasets import fetch_mldata import numpy as np from sklearn.linear_model import SGDClassifier from sklearn.model_selection import…
混淆矩阵 介绍这些概念之前先来介绍一个概念:混淆矩阵(confusion matrix).对于 k 元分类,其实它就是一个k x k的表格,用来记录分类器的预测结果.对于常见的二元分类,它的混淆矩阵是 2x2 的. 假设要对 15 个人预测是否患病,使用 1 表示患病,使用 0 表示正常.预测结果如下: 预测值: 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 真实值: 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 将上面的预测结果转为混淆矩阵,如下: 上图展示了一个二…
这里举例说明 混淆矩阵  精确率 召回率  F1…
http://blog.csdn.net/u012089317/article/details/52156514 ,y^)=1nsamples∑i=1nsamples(yi−y^i)2…
转:http://www.zhenv5.com/?p=1079 MAP可以由它的三个部分来理解:P,AP,MAP 先说P(Precision)精度,正确率.在信息检索领域用的比较多,和正确率一块出现的是找回率Recall.对于一个查询,返回了一系列的文档,正确率指的是返回的结果中相关的文档占的比例,定义为:precision=返回结果中相关文档的数目/返回结果的数目: 而召回率则是返回结果中相关文档占所有相关文档的比例,定义为:Recall=返回结果中相关文档的数目/所有相关文档的数目. 正确率…
sklearn中文文档:http://sklearn.apachecn.org/#/ https://www.cnblogs.com/nolonely/p/7009001.html https://www.cnblogs.com/zhubinwang/p/5170087.html 调参:https://www.cnblogs.com/pinard/p/6143927.html GBR优缺点: http://www.cnblogs.com/pinard/p/6140514.html 原理: htt…
Alink漫谈(二十二) :源码分析之聚类评估 目录 Alink漫谈(二十二) :源码分析之聚类评估 0x00 摘要 0x01 背景概念 1.1 什么是聚类 1.2 聚类分析的方法 1.3 聚类评估 0x02 Alink支持的评估指标 2.1 轮廓系数(silhouette coefficient): 2.2 Calinski-Harabaz(CH) 2.3 Davies-Bouldin指数(Dbi) 2.4 Rand index(兰德指数)(RI) .Adjusted Rand index(调…
目录 k-means k-means API k-means对Instacart Market用户聚类 Kmeans性能评估指标 Kmeans性能评估指标API Kmeans总结 无监督学习,顾名思义,就是不受监督的学习,一种自由的学习方式.该学习方式不需要先验知识进行指导,而是不断地自我认知,自我巩固,最后进行自我归纳,在机器学习中,无监督学习可以被简单理解为不为训练集提供对应的类别标识(label),其与有监督学习的对比如下: 有监督学习(Supervised Learning). 在有监督…
当存储到mongodb中的是string类型的时间,小tips: 1. 那么在对此域按照时间聚类(每周,每月)时就不能直接使用mongodb的time关键字了,因为mongodb有自己的时间类型,且目前它只认可自己的时间类型. 2. 假如对于时间进行简单的聚类,比如按照年,月,日,时,分,秒来聚类,我们可以使用mongodb的substr关键字模拟出mongodb能够认可的时间类型. 比如 2015-03-02 22:53:45 ---> 2014 这样截取出year,2014-03-02就是截…
R中cluster中包含多种聚类算法,下面通过某个数据集,进行三种聚类算法的评估 # ============================ # 评估聚类 # # ============================ # 引入fpc包(cluster.stats) library(fpc) # 引入包库(clara.fanny) library(cluster) #=====调用聚类算法====================================================…
距离度量 需求:计算两点间的欧几里得距离.曼哈顿距离.切比雪夫距离.堪培拉距离 实现:利用commons.math3库相应函数 1 import org.apache.commons.math3.ml.distance.*; 2 3 public class TestMetrics { 4 public static void main(String[] args) { 5 double[] x = {1, 3}, y = {5, 6}; 6 7 EuclideanDistance eD = n…
统计角度窥视模型概念 作者:白宁超 2016年7月18日17:18:43 摘要:写本文的初衷源于基于HMM模型序列标注的一个实验,实验完成之后,迫切想知道采用的序列标注模型的好坏,有哪些指标可以度量.于是,就产生了对这一专题进度学习总结,这样也便于其他人参考,节约大家的时间.本文依旧旨在简明扼要梳理出模型评估核心指标,重点达到实用.本文布局如下:第一章采用统计学习角度介绍什么是学习模型以及如何选择,因为现今的自然语言处理方面大都采用概率统计完成的,事实证明这也比规则的方法好.第二章采用基于数据挖…