[LOJ 572] Misaka Network 与求和】的更多相关文章

题目:https://loj.ac/problem/572 推式子:https://www.cnblogs.com/cjoieryl/p/10150718.html 又学习了一下杜教筛hh: 原来 unsigned int 的输出是 %u 啊: 注意各处还是要用 (ll),不要不小心都写成 (uint) 了: 然而递归版很慢... #include<cstdio> #include<cstring> #include<algorithm> #include<cma…
一.题目 点此看题 二.解法 直接推柿子吧: \[\sum_{i=1}^n\sum_{j=1}^nf(\gcd(i,j))^k \] \[\sum_{d=1}^nf(d)^k\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}[(i,j)=1] \] \[\sum_{d=1}^nf(d)^k\sum_{x=1}^{n/d}\mu(x)\frac{n}{dx}\frac{n}{dx} \] \[\sum_{T=1}^n(\frac{n}{T})^2\sum_{d|T}f(d)^k\mu…
[LOJ#572]Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛) 题面 LOJ \[ans=\sum_{i=1}^n\sum_{j=1}^n f(gcd(i,j))^k\] 其中\(f(x)\)表示\(x\)的次大质因子. 题解 这个数据范围不是杜教筛就是\(min\_25\)筛了吧... 看到次大质因子显然要\(min\_25\)筛了吧... 莫比乌斯反演的部分比较简单,懒得写过程了. \[ans=\sum_{T=1}^n [\frac{n}{T}]^2\sum_…
题目:https://loj.ac/problem/572 莫比乌斯反演得 \( ans=\sum\limits_{D=1}^{n}\left\lfloor\frac{n}{D}\right\rfloor^2\sum\limits_{d|D}f(d)^k\mu (\frac{D}{d}) \) 计算 \( S(n)=\sum\limits_{i=1}^{n}f×\mu \) 像杜教筛(https://blog.csdn.net/a1799342217/article/details/803285…
题意 求 \[ \sum_{i = 1}^{n} \sum_{i = 1}^{n} f(\gcd(i, j))^k \pmod {2^{32}} \] 其中 \(f(x)\) 为 \(x\) 的次大质因子,重复的质因子计算多次. 特别的,定义 \(f(1) = 0, f(p) = 0\) ,此处 \(p\) 为质数. 题解 首先先莫比乌斯反演前几步. \[ ans = \sum_{d = 1}^{n} f(d)^k \sum_{i = 1}^{\lfloor \frac{n}{d} \rfloo…
题目 有生之年我竟然能\(A\) 这个题求的是这个 \[\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))^k\] \(f(i)\)定义为\(i\)的次大质因子,其中\(f(p)=1,f(1)=0\) 看到这道题的第一反应肯定是这东西TM还能求 习惯性反演 \[\sum_{d=1}^nF(d)f(d)^k\] \[=\sum_{d=1}^nf(d)^k\sum_{d|i}\mu(\frac{i}{d})\left \lfloor \frac{n}{i} \right \rfl…
传送门 假设 \(f^k(i)\) 就是 \(f(i)\) 莫比乌斯反演得到 \[ans=\sum_{i=1}^{N}\lfloor\frac{N}{i}\rfloor^2\sum_{d|i}f(d)\mu(\frac{i}{d})\] 令 \(g(N)=\sum_{i=1}^{N}(f\times \mu)(i)\) 而 \((f\times \mu)\times 1=f\times (\mu\times 1)=f\) 所以 \[\sum_{i=1}^{N}f(i)=\sum_{i=1}^{N…
传送门 思路 (以下令\(F(n)=f(n)^k\)) 首先肯定要莫比乌斯反演,那么可以推出: \[ ans=\sum_{T=1}^n \lfloor\frac n T\rfloor^2\sum_{d|T}F(d)\mu(T/d) \] 可以整除分块,但后面的东西怎么办呢? 令\(G(T)=F*\mu\),那么就有 \[ ans=\sum_{T=1}^n \lfloor\frac n T\rfloor^2G(T) \] 看到\(\mu\)函数有点烦,考虑用杜教筛的式子消去它. \[ g(1)S(…
可能是一篇(抄来的)min25学习笔记 一个要求很多的积性函数 我们考虑有一个积性函数,这个函数满足可以快速计算质数处的值 且质数可以写成一个多项式的形式--而且这个多项式如果强行套在合数上,满足积性,我也不知道有没有除了\(x^{k}\)别的多项式惹 假如\(F(x) = x^{k}\)吧 我们想要计算这个东西 \(g(n,j)\)表示前\(n\)个数里,质数的和,加上合数中最小质因子大于\(P_{j}\)的和 那么,怎么求呢 我们考虑已经求好\(g(n,j - 1)\)这个数组 那么如果\(…
Min_25 筛这个东西,完全理解花了我很长的时间,所以写点东西来记录一些自己的理解. 它能做什么 对于某个数论函数 \(f\),如果满足以下几个条件,那么它就可以用 Min_25 筛来快速求出这个函数的前缀和. 它是一个积性函数 对于一个质数 \(p\) ,\(f(p)\) 的表达式必须是一个项数比较小的多项式.即 \(\displaystyle f(p) = \sum a_ip^{b_i}\). 对于一个质数 \(p\) ,\(f(p^k)\) 的表达式必须可以由 \(f(p)\) 快速得到…