numpy函数的使用】的更多相关文章

利用Numpy函数库构造4*4随机数组,然后将数组转化为矩阵,然后矩阵与其逆矩阵相乘,计算机处理的误差 from numpy import * random.rand(4,4) print(random.rand(4,4)) randMat = mat(random.rand(4,4)) print(randMat.I) invRandMat = randMat.I print(randMat*invRandMat) myEye =randMat*invRandMat print(myEye-e…
Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate() 觉得有用的话,欢迎一起讨论相互学习~Follow Me 转载链接 numpy.stack()函数 函数原型:numpy.stack(arrays, axis=0) 程序实例: >>> arrays = [np.random.randn(3, 4) for _ in range(10)] >>> np.stack(arrays,…
本篇主要收集一些平时见到的 Numpy 函数. numpy.random.seed & numpy.random.RandomState np.random.seed() 和 np.random.RandomState 都用于生成随机数种子,np.random.seed() 是可以直接调用的方法,而 np.random.RandomState 则是一个产生随机数的容器,使用时需要创建实例对象,进而调用实例方法,如 np.random.RandomState(42).uniform() . 随机数…
##numpy函数库中一些经常使用函数的记录 近期才開始接触python,python中为我们提供了大量的库,不太熟悉.因此在<机器学习实战>的学习中,对遇到的一些函数的使用方法进行记录. (1)mat( ) numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都能够用于处理行列表示的数字元素. 尽管他们看起来非常类似,可是在这两个数据类型上运行同样的数学运算能够得到不同的结果,当中numpy函数库中matrix与MATLAB中matrices等价. 调用mat( )…
##numpy函数库中一些常用函数的记录 最近才开始接触Python,python中为我们提供了大量的库,不太熟悉,因此在<机器学习实战>的学习中,对遇到的一些函数的用法进行记录. (1)mat( ) numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素.虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可以得到不同的结果,其中numpy函数库中matrix与MATLAB中matrices等价. 调用mat( )函数可以将数…
numpy函数笔记 np.isin用法 np.isin(a,b) 用于判定a中的元素在b中是否出现过,如果出现过返回True,否则返回False,最终结果为一个形状和a一模一样的数组.(注意:这里的a和b是像数组类型就行,比如列表的话,传入进去之后,numpy会自动将其转化为numpy数组) 但是当参数invert被设置为True时,情况恰好相反,如果a中元素在b中没有出现则返回True,如果出现了则返回False. import numpy as np # 这里使用reshape是为了验证是否…
接触 numpy 遇到的第一个函数可能就是 linspace 函数,但是对于我们这种没有学过 matlab 的人来说,根本不知道这是什么. 所以只能自己查资料. 词典显示: 线性等分向量 线性平分矢量 线性平分向量 那么怎么用呢? linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None) Return evenly spaced numbers over a specified interval. Return…
numpy.linspace(start, stop, num=50, endpoint=True, retstep=False) start 起始位置 stop 终止位置 num 个数 endpoint 终止位置是否计算 是否返回步长 np.linspace(0, 1, 5) array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ]) numpy.arange([start, ]stop, [step, ]dtype=None) start=None, stop=No…
从函数规则创建数组是非常方便的方法.在numpy中我们常用fromfunction函数来实现这个功能. 在numpy的官网有这么一个例子. >>> def f(x,y): ... return 10*x+y ... >>> b = fromfunction(f,(5,4),dtype=int) >>> b array([[ 0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33]…
感觉numpy.hstack()和numpy.column_stack()函数略有相似,numpy.vstack()与numpy.row_stack()函数也是挺像的. stackoverflow上也有类似的讨论,在这里numpy vstack vs. column_stack. 给一个相关函数的列表: stack()    Join a sequence of arrays along a new axis. hstack()    Stack arrays in sequence horiz…