https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 2018-03-07 前言 目前业界基于 Hadoop 技术栈的底层计算平台越发稳定成熟,计算能力不再成为主要瓶颈. 多样化的数据.复杂的业务分析需求.系统稳定性.数据可靠性, 这些软性要求, 逐渐成为日志分析系统面对的主要问题.2018 年线上线下融合已成大势,苏宁易购提出并践行双线融合模式,提出了智…
Spark应用开发 要求: 了解Spark基本原理 搭建Spark开发环境 开发Spark应用程序 调试运行Spark应用程序 YARN资源调度,可以和Hadoop集群无缝对接 Spark适用场景大多数现有集群计算框架如MapReduce等基于从稳定存储(文件系统)到稳定存储的非循环数据流,数据重用都是基于磁盘的,执行效率比较低.与传统的MapReduce任务频繁读写磁盘数据相比,基于内存计算的Spark则更适合应用在迭代计算,交互式分析等场景. Spark应用运行流程--关键角色 Client…
Spark Streaming可以用于实时流项目的开发,实时流项目的数据源除了可以来源于日志.文件.网络端口等,常常也有这种需求,那就是实时分析处理MySQL中的增量数据.面对这种需求当然我们可以通过JDBC的方式定时查询Mysql,然后再对查询到的数据进行处理也能得到预期的结果,但是Mysql往往还有其他业务也在使用,这些业务往往比较重要,通过JDBC方式频繁查询会对Mysql造成大量无形的压力,甚至可能会影响正常业务的使用,在基本不影响其他Mysql正常使用的情况下完成对增量数据的处理,那就…
一.数据接收原理 二.源码分析 入口包org.apache.spark.streaming.receiver下ReceiverSupervisorImpl类的onStart()方法 ### override protected def onStart() { // 这里的blockGenerator很重要,和数据接收有关,其运行在worker的executor端负责数据接收后的一些存取工作,以及配合ReceiverTracker // 在Executor上,启动Receiver之前,就会先启动这…
https://mp.weixin.qq.com/s/bGXhC9hvDj4lzK7wYYHGDg 目前,我们使用Filebeat监控日志产生的目录,收集产生的日志,打到logstash集群,接入kafka的topic,再由Spark Streaming 进行实时解析,将解析的结果打入Redis缓存,供后续统计查询使用.…
数据分析中将两个数据集进行 Join 操作是很常见的场景.在 Spark 的物理计划阶段,Spark 的 Join Selection 类会根 据 Join hints 策略.Join 表的大小. Join 是等值 Join 还是不等值以及参与 Join 的 key 是否可以排序等条件来选择最 终的 Join 策略,最后 Spark 会利用选择好的 Join 策略执行最终的计算.当前 Spark 一共支持五种 Join 策略: Broadcast hash join (BHJ) Shuffle…
第1章 Spark Streaming 概述1.1 什么是 Spark Streaming1.2 为什么要学习 Spark Streaming1.3 Spark 与 Storm 的对比第2章 运行 Spark Streaming第3章 架构与抽象第4章 Spark Streaming 解析4.1 初始化 StreamingContext4.2 什么是 DStreams4.3 DStream 的输入4.3.1 基本数据源4.3.2 高级数据源4.4 DStream 的转换4.4.1 无状态转化操作…
Spark Streaming: Spark用于处理流式数据的模块,类似Storm 核心:DStream(离散流),就是一个RDD============================================一.Spark Streaming基础 1.什么是Spark Streaming? (*)Spark Streaming makes it easy to build scalable fault-tolerant streaming applications. (*)常见的流式处…
1.Spark Streaming功能介绍 1)定义 Spark Streaming is an extension of the core Spark API that enables scalable, high-throughput, fault-tolerant stream processing of live data streams 2.NC服务安装并运行Spark Streaming 1)在线安装nc命令 yum install -y nc 2)运行Spark Streaming…
Apache Spark 是加州大学伯克利分校的 AMPLabs 开发的开源分布式轻量级通用计算框架. 由于 Spark 基于内存设计,使得它拥有比 Hadoop 更高的性能(极端情况下可以达到 100x),并且对多语言(Scala.Java.Python)提供支持. 其一栈式设计特点使得我们的学习和维护成本大大地减少,而且其提供了很好的容错解决方案 业务场景 我们每天都有来自全国各地的天然气购气数据,并根据用户的充气,退气,核销等实时计算分析的是用户订单数数据,由于数据量比较大,单台机器处理已…
第一章 Spark 性能调优 1.1 常规性能调优 1.1.1 常规性能调优一:最优资源配置 Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略. 资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本如代码清单2-1所示: 代码清单2-1 标准Spark提交脚本 /usr/opt/modules/spark/bin/spark-submit \ --…
1.Spark计算依赖内存,如果目前只有10g内存,但是需要将500G的文件排序并输出,需要如何操作? ①.把磁盘上的500G数据分割为100块(chunks),每份5GB.(注意,要留一些系统空间!) ②.顺序将每份5GB数据读入内存,使用quick sort算法排序. ③.把排序好的数据(也是5GB)存放回磁盘. ④.循环100次,现在,所有的100个块都已经各自排序了.(剩下的工作就是如何把它们合并排序!) ⑤.从100个块中分别读取5G/100=0.05 G入内存(100input bu…
前面一篇文章提到大数据开发-Spark Join原理详解,本文从源码角度来看cogroup 的join实现 1.分析下面的代码 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} object JoinDemo { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName(this.get…
本期内容 : 数据接收架构设计模式 数据接收源码彻底研究 一.Spark Streaming数据接收设计模式   Spark Streaming接收数据也相似MVC架构: 1. Mode相当于Receiver存储数据,C级别的,Receiver是个抽象因为他有好多的Receiver 2. ReceiverSupervisor 是控制器,因为Receiver启动是靠ReceiverSuperior启动的,及接收到的数据交给ReceiverSuperior存储数据的 3. Driver会获得源数据,…
1.为什么引入Backpressure 默认情况下,Spark Streaming通过Receiver以生产者生产数据的速率接收数据,计算过程中会出现batch processing time > batch interval的情况,其中batch processing time 为实际计算一个批次花费时间, batch interval为Streaming应用设置的批处理间隔.这意味着Spark Streaming的数据接收速率高于Spark从队列中移除数据的速率,也就是数据处理能力低,在设置…
来自: https://community.qingcloud.com/topic/344/spark-streaming使用kafka保证数据零丢失 spark streaming从1.2开始提供了数据的零丢失,想享受这个特性,需要满足如下条件: 数据输入需要可靠的sources和可靠的receivers 应用metadata必须通过应用driver checkpoint WAL(write ahead log) 可靠的sources和receivers spark streaming可以通过…
本节的主要内容: 一.数据接受架构和设计模式 二.接受数据的源码解读 Spark Streaming不断持续的接收数据,具有Receiver的Spark 应用程序的考虑. Receiver和Driver在不同进程,Receiver接收数据后要不断给Deriver汇报. 因为Driver负责调度,Receiver接收的数据如果不汇报给Deriver,Deriver调度时不会把接收的数据计算入调度系统中(如:数据ID,Block分片). 思考Spark Streaming接收数据: 不断有循环器接收…
版本:V2.0 第一章       Spark 性能调优 1.1      常规性能调优 1.1.1   常规性能调优一:最优资源配置 Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略. 资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本如代码清单2-1所示: 代码清单2-1 标准Spark提交脚本 /usr/opt/modules/spark/…
1. spark 是什么? >Apache Spark 是一个类似hadoop的开源高速集群运算环境  与后者不同的是,spark更快(官方的说法是快近100倍).提供高层JAVA,Scala,PythonI ,R API接口.而且提tools:Spark SQL for SQL 处理结构化数据, MLlib for machine learning, GraphX for graph processing, and Spark Streaming. 2. spark streaming Spa…
简介 什么是DataWorks: DataWorks(数据工场,原大数据开发套件)是阿里云重要的PaaS(Platform-as-a-Service)平台产品,为您提供数据集成.数据开发.数据地图.数据质量和数据服务等全方位的产品服务,一站式开发管理的界面,帮助企业专注于数据价值的挖掘和探索. DataWorks支持多种计算和存储引擎服务,包括离线计算MaxCompute.开源大数据引擎E-MapReduce.实时计算(基于Flink).机器学习PAI.图计算服务Graph Compute和交互…
阅识风云是华为云信息大咖,擅长将复杂信息多元化呈现,其出品的一张图(云图说).深入浅出的博文(云小课)或短视频(云视厅)总有一款能让您快速上手华为云.更多精彩内容请单击此处. 摘要:欢迎来到DGC数据开发的世界,花十分钟跟着云小课一起学习云数据开发.本文主要介绍DGC数据开发的基本概念.优势.应用场景及数据开发的示例,帮助您快速掌握智能数据开发. 本文分享自华为云社区<[云小课]EI第36课 DGC数据开发之基础入门篇(10分钟扫盲)>,原文作者:阅识风云 DGC数据开发简介 数据湖治理中心…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级函数进行复杂算法的处理…
Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Input DStreams 和 Receivers(接收器) DStreams 上的 Transformations(转换) DStreams 上的输出操作 DataFrame 和 SQL 操作 MLlib 操作 缓存 / 持久性 Checkpointing Accumulators, Broadcas…
铭文一级: DataV功能说明1)点击量分省排名/运营商访问占比 Spark SQL项目实战课程: 通过IP就能解析到省份.城市.运营商 2)浏览器访问占比/操作系统占比 Hadoop项目:userAgent DataV访问的数据库(MySQL),需要能够在公网上访问 DataV测试数据CREATE TABLE course_click_count(ID int(4) PRIMARY KEY,day VARCHAR(10),course_id VARCHAR(10),click_count lo…
本文主要介绍四个问题: 什么是Spark Streaming实时计算? Spark实时计算原理流程是什么? Spark 2.X下一代实时计算框架Structured Streaming Spark Streaming相对其他实时计算框架该如何技术选型? 本文主要针对初学者,如果有不明白的概念可了解之前的博客内容. 1.什么是Spark Streaming? 与其他大数据框架Storm.Flink一样,Spark Streaming是基于Spark Core基础之上用于处理实时计算业务的框架.其实…
Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍 http://www.cnblogs.com/shishanyuan/p/4747735.html 1.Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP…
1.Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafka.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级函数进行复杂算法的处理.最后还可以将处理结果存储到文件系统,数据库和实时仪表盘.在“One Stack rule t…
预览 Spark Streaming是Spark核心API的扩展,支持高扩展,高吞吐量,实时数据流的容错流处理.数据可以从Kafka,Flume或TCP socket等许多来源获取,并且可以使用复杂的算法进行处理(比如map,reduce,join,window等高级函数).最终,处理的结果数据可以推送到文件系统,数据库或实时仪表盘上.           在内部,它的工作原理如下图.Spark Streaming接收实时输入数据流并将数据分成批,然后由Spark引擎处理,进而批量生成最终结果流…
提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处理可以分为如以下三个类型. 复杂的批量数据处理(batch data processing),通常的时间跨度在数十分钟到数小时之间. 基于历史数据的交互式查询(interactive query),通常的时间跨度在数十秒到数分钟之间. 基于实时数据流的数据处理(streaming data proces…
一.        场景 ◆ Spark[4]: Scope:  a MapReduce-like cluster computing framework designed for low-latency iterativejobs and interactive use from an interpreter(在大规模的特定数据集上的迭代运算或重复查询检索) 正如其目标scope,Spark适用于需要多次操作特定数据集的应用场合.需要反复操作的次数越多,所需读取的数据量越大,受益越大,数据量小…