EM算法的收敛性】的更多相关文章

标签(空格分隔): 机器学习 (最近被一波波的笔试+面试淹没了,但是在有两次面试时被问到了同一个问题:K-Means算法的收敛性.在网上查阅了很多资料,并没有看到很清晰的解释,所以希望可以从K-Means与EM算法的关系,以及EM算法本身的收敛性证明中找到蛛丝马迹,下次不要再掉坑啊..) EM算法的收敛性 1.通过极大似然估计建立目标函数: \(l(\theta) = \sum_{i=1}^{m}log\ p(x;\theta) = \sum_{i=1}^{m}log\sum_{z}p(x,z;…
https://blog.csdn.net/kevinoop/article/details/80522477…
不多说,直接上干货! 面试很容易被问的:K-Means算法的收敛性. 在网上查阅了很多资料,并没有看到很清晰的解释,所以希望可以从K-Means与EM算法的关系,以及EM算法本身的收敛性证明中找到蛛丝马迹,下次不要再掉坑啊. EM算法的收敛性 1.通过极大似然估计建立目标函数: 通过EM算法来找到似然函数的极大值,思路如下:希望找到最好的参数θ,能够使最大似然目标函数取最大值.但是直接计算 比较困难,所以我们希望能够找到一个不带隐变量z的函数恒成立,并用 逼近目标函数. 如下图所示: 在绿色线位…
上一篇开头说过1983年,美国数学家吴建福(C.F. Jeff Wu)给出了EM算法在指数族分布以外的收敛性证明. EM算法的收敛性只要我们能够证明对数似然函数的值在迭代的过程中是增加的 即可: 证明: 一直我们的EM算法会极大化这个似然函数L, 问题得证.…
# coding:utf-8 import numpy as np def qq(y,alpha,mu,sigma,K,gama):#计算Q函数 gsum=[] n=len(y) for k in range(K): gsum.append(np.sum([gama[j,k] for j in range(n)])) return np.sum([g*np.log(ak) for g,ak in zip(gsum,alpha)])+\ np.sum([[np.sum(gama[j,k]*(np.…
简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系列样本,Logistic回归问题属于监督型学习问题,样本中含有训练的特征以及标签,在Logistic回归的参数求解中,通过构造样本属于类别和类别的概率: 这样便能得到Logistic回归的属于不同类别的概率函数: 此时,使用极大似然估计便能够估计出模型中的参数.但是,如果此时的标签是未知的,称为隐变…
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断等等.本文就对EM算法的原理做一个总结. 1. EM算法要解决的问题 我们经常会从样本观察数据中,找出样本的模型参数. 最常用的方法就是极大化模型分布的对数似然函数. 但是在一些情况下,我们得到的观察数据有未观察到的隐含数据,此时我们未知的有隐含数据和模型参数,因而无法直接用极大化对数似然函数得到模型分布的参数.…
最近接触了pLSA模型,该模型需要使用期望最大化(Expectation Maximization)算法求解. 本文简述了以下内容: 为什么需要EM算法 EM算法的推导与流程 EM算法的收敛性定理 使用EM算法求解三硬币模型 为什么需要EM算法 数理统计的基本问题就是根据样本所提供的信息,对总体的分布或者分布的数字特征作出统计推断.所谓总体,就是一个具有确定分布的随机变量,来自总体的每一个iid样本都是一个与总体有相同分布的随机变量. 参数估计是指这样一类问题——总体所服从的分布类型已知,但某些…
注:本文是对<统计学习方法>EM算法的一个简单总结. 1. 什么是EM算法? 引用书上的话: 概率模型有时既含有观测变量,又含有隐变量或者潜在变量.如果概率模型的变量都是观测变量,可以直接使用极大似然估计法或者贝叶斯的方法进行估计模型参数,但是当模型含有隐藏变量时,就不能简单使用这些方法了.EM算法就是含有隐变量的概率模型参数的极大似然估计法,或者极大似然后验概率估计法. 2. EM 算法的一个小例子:三硬币模型 假设有3枚硬币,记作A,B,C.这些硬币的正面出现的概率分别为\(\pi\).\…
1 EM算法的引入1.1 EM算法1.2 EM算法的导出2 EM算法的收敛性3EM算法在高斯混合模型的应用3.1 高斯混合模型Gaussian misture model3.2 GMM中参数估计的EM算法4 EM推广4.1 F函数的极大-极大算法 期望极大值算法(expectation maximizition algorithm,EM).是一种迭代算法,1977年由Dempster总结提出,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计或极大后验估计.EM算法分为…
1. 通过一个简单的例子直观上理解EM的核心思想 0x1: 问题背景 假设现在有两枚硬币Coin_a和Coin_b,随机抛掷后正面朝上/反面朝上的概率分别是 Coin_a:P1:-P1 Coin_b:P2:-P2 为了估计这个概率(我们事先是不知道这两枚硬币正面朝上的概率的),我们需要通过实验法来进行最大似然估计,每次取一枚硬币,连掷5下,记录下结果 硬币 结果 统计 Coin_a 正 正 反 正 反 3正-2反 Coin_b 反 反 正 正 反 2正-3反 Coin_a 正 反 反 反 反 1…
今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教. 众所周知,极大似然估计是一种应用很广泛的参数估计方法.例如我手头有一些东北人的身高的数据,又知道身高的概率模型是高斯分布,那么利用极大化似然函数的方法可以估计出高斯分布的两个参数,均值和方差.这个方法基本上所有概率课本上都会讲,我这就不多说了,不清楚的请百度. 然而现在我面临的是这种情况,我手上的数据是四川人和东北人的身高合集,然而对于其中具体的每一个数据,并没有标定出它来自“东北…
一.概述 概率模型有时既含有观测变量,又含有隐变量,如果概率模型的变量都是观测变量,那么给定数据,可以直接利用极大似然估计法或者贝叶斯估计法估计模型参数.但是,当模型同时又含有隐变量时,就不能简单地使用这些方法.EM算法适用于带有隐变量的概率模型的参数估计,利用极大似然估计法逐步迭代求解. 二.jensen不等式   是区间 上的凸函数,则对任意的 ,有不等式:   即: E[f(X)] ≥ f(E(X))  ,因为(x1+x2+...+xn)/n=E(X),同理可得E(f(X)).当x1=x2…
概述 EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计. EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求极大( maximization ),所以这一算法称为期望极大算法(expectation maximization algorithm),简称EM算法.  EM算法的引入 一般地,用Y表示观测随机变量的数据,Z表示隐随机变量的数据.Y和Z连在一起称为完全数据( complete-data…
EM算法,全称Expectation Maximization Algorithm,译作最大期望化算法或期望最大算法,是机器学习十大算法之一,吴军博士在<数学之美>书中称其为“上帝视角”算法,其重要性可见一斑. EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估计.它与极大似然估计的区别就是它在迭代过程中依赖极大似然估计方法.极大似然估计是在模型已知的情况下,求解模型的参数$\theta$,让抽样出现的概率最大.类似于求解一元方…
注:本文中涉及到的公式一律省略(公式不好敲出来),若想了解公式的具体实现,请参考原著. 1.基本概念 (1)聚类的思想: 将数据集划分为若干个不想交的子集(称为一个簇cluster),每个簇潜在地对应于某一个概念.但是每个簇所具有现实意义由使用者自己决定,聚类算法仅仅会进行划分. (2)聚类的作用: 1)可以作为一个单独的过程,用于寻找数据的一个分布规律 2)作为分类的预处理过程.首先对分类数据进行聚类处理,然后在聚类结果的每一个簇上执行分类过程. (3)聚类的性能度量: 1)外部指标:该指标是…
python大战机器学习——聚类和EM算法   注:本文中涉及到的公式一律省略(公式不好敲出来),若想了解公式的具体实现,请参考原著. 1.基本概念 (1)聚类的思想: 将数据集划分为若干个不想交的子集(称为一个簇cluster),每个簇潜在地对应于某一个概念.但是每个簇所具有现实意义由使用者自己决定,聚类算法仅仅会进行划分. (2)聚类的作用: 1)可以作为一个单独的过程,用于寻找数据的一个分布规律 2)作为分类的预处理过程.首先对分类数据进行聚类处理,然后在聚类结果的每一个簇上执行分类过程.…
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断,混合高斯模型GMM,基于概率统计的pLSA模型. EM算法概述(原文) 我们经常会从样本观察数据中,找出样本的模型参数. 最常用的方法就是极大化模型分布的对数似然函数. 但是在一些情况下,我们得到的观察数据有未观察到的隐含数据,此时我们未知的有隐含数据和模型参数,因而无法直接用极大化对数似然函数得到模型分布的参…
众所周知,极大似然估计是一种应用很广泛的参数估计方法.例如我手头有一些东北人的身高的数据,又知道身高的概率模型是高斯分布,那么利用极大化似然函数的方法可以估计出高斯分布的两个参数,均值和方差.这个方法基本上所有概率课本上都会讲,我这就不多说了,不清楚的请百度. 然而现在我面临的是这种情况,我手上的数据是四川人和东北人的身高合集,然而对于其中具体的每一个数据,并没有标定出它来自“东北人”还是“四川人”,我想如果把这个数据集的概率密度画出来,大约是这个样子: 好了不要吐槽了,能画成这个样子我已经很用…
EM算法理解的九层境界 EM 就是 E + M EM 是一种局部下限构造 K-Means是一种Hard EM算法 从EM 到 广义EM 广义EM的一个特例是VBEM 广义EM的另一个特例是WS算法 广义EM的再一个特例是Gibbs抽样算法 WS算法是VAE和GAN组合的简化版 KL距离的统一 第一层境界, EM算法就是E 期望 + M 最大化 最经典的例子就是抛3个硬币,跑I硬币决定C1和C2,然后抛C1或者C2决定正反面, 然后估算3个硬币的正反面概率值. &amp;amp;amp;amp;a…
EM 算法的英文全称是: Expectation-Maximum. EM 算法的步骤 假设 \(Z\) 是隐变量,\(\theta\) 是待定参数. E 步:固定参数 \(\theta\),求 \(Z\) 的期望: M 步:求 \(\theta\) 的极大似然估计. 与 K-means 算法的比较 1.固定聚类中心,把每一个数据点分配到最近的中心(先确定隐含类别变量 \(c\),得到每个数据点的类别): 2.现在每个数据点都有了类别,我们发现,可以重新计算每个类别的中心,使得损失函数 \(J\)…
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域的基础,比如隐式马尔科夫算法(HMM),LDA主题模型的变分推断算法等等.本文对于EM算法,我们主要从以下三个方向学习: 1,最大似然 2,EM算法思想及其推导 3,GMM(高斯混合模型) 1,最大似然概率 我们经常会从样本观察数据中,找到样本的模型参数.最常用的方法就是极大化模型分布的对数似然函数.怎么理解呢?下面看我一一道来. 假设我们需要调查我们学习的男生和女生的身高分布.你…
1 数学基础 在实际中,最小化的函数有几个极值,所以最优化算法得出的极值不确实是否为全局的极值,对于一些特殊的函数,凸函数与凹函数,任何局部极值也是全局极致,因此如果目标函数是凸的或凹的,那么优化算法就能保证是全局的. 凸集:在凸几何中,凸集(convex set)是在凸组合下闭合的仿射空间的子集.更具体地说,在欧氏空间中,凸集是对于集合内的每一对点,连接该对点的直线段上的每个点也在该集合内.例如,立方体是凸集,但是任何中空的或具有凹痕的例如月牙形都不是凸集.特别的,凸集,实数R上(或复数C上)…
讲授高斯混合模型的基本概念,训练算法面临的问题,EM算法的核心思想,算法的实现,实际应用. 大纲: 高斯混合模型简介实际例子训练算法面临的困难EM算法应用-视频背景建模总结 高斯混合模型简写GMM,期望最大化算法EM.概率分布要确定里边的参数有两种手段,即据估计.最大似然估计. 高斯混合模型简介: 高斯分布也叫正态分布,在机器学习的一些书和论文里边,一般把它称为高斯分布,尤其是老外习惯这样写. 高斯混合模型是多个高斯分布的一个叠加,它的概率密度函数可以写成: 其中x肯定是一个连续性的随机变量,一…
讲到 EM 算法就不得不提极大似然估计,我之前讲过,请参考我的博客 下面我用一张图解释极大似然估计和 EM 算法的区别 EM 算法引例1-抛3枚硬币 还是上图中抛硬币的例子,假设最后结果正面记为1,反面记为0,抛10次,结果为 1101001011: 下面我用数据公式解释下这个例子和 EM 算法: 三硬币模型可以写作 θ 表示模型参数,即 三枚硬币正面的概率,用 π p q 表示: y 表示观测随机变量,取值为 0,1: z 表示隐随机变量,在本例中就是 A 的正反面,或者是选择 B 还是不选择…
一.EM算法概述 EM算法(Expectation Maximization Algorithm,期望极大算法)是一种迭代算法,用于求解含有隐变量的概率模型参数的极大似然估计(MLE)或极大后验概率估计(MAP).EM算法是一种比较通用的参数估计算法,被广泛用于朴素贝叶斯.GMM(高斯混合模型).K-means(K均值聚类)和HMM(隐马尔科夫模型)的参数估计. 隐变量是指不能被直接观察到,但是对系统的状态和能被观察到的变量存在影响的变量,比如经典的三硬币模型中,能被观察到的变量是在某次实验中,…
对于高斯混合模型是干什么的呢?它解决什么样的问题呢?它常用在非监督学习中,意思就是我们的训练样本集合只有数据,没有标签. 它用来解决这样的问题:我们有一堆的训练样本,这些样本可以一共分为K类,用z(i)表示.,但是具体样本属于哪类我们并不知道,现在我们需要建立一个模型来描述这个训练样本的分布.这时, 我们就可以用高斯混合模型来进行描述. 怎么入手呢? 高斯混合模型: 我们这么想,因为样本集合潜在地是可以分为K类的,用z(i)表示第 i 样本所属的类别,所以z(i) 的范围为从1至 K.对于我们可…
GMM及EM算法 标签(空格分隔): 机器学习 前言: EM(Exception Maximizition) -- 期望最大化算法,用于含有隐变量的概率模型参数的极大似然估计: GMM(Gaussian Mixture Model) -- 高斯混合模型,是一种多个高斯分布混合在一起的模型,主要应用EM算法估计其参数: 本篇博客首先从简单的k-means算法给出EM算法的迭代形式,然后用GMM的求解过程给出EM算法的宏观认识:最后给出EM的标准形式,并分析EM算法为什么收敛. K-Means Cl…
1.EM算法是含有隐变量的变量的概率模型极大似然估计或极大后验概率估计的迭代算法,含有隐变量的概率模型的数据表示为$P(Y,Z|\theta)$.这里,$Y$是观测变量的数据,$Z$是隐变量的数据,$\theta$是模型参数.EM算法通过迭代求解观测数据的对数似然函数$L(\theta)=logP(Y|\theta)$的极大化,实现极大似然估计.每次迭代包括两步:E步,求期望,即求$logP(Y|\theta)$关于$P(Y|\theta^{(i)})$的期望: $Q(\theta,\theta…
斯坦福大学机器学习,EM算法求解高斯混合模型.一种高斯混合模型算法的改进方法---将聚类算法与传统高斯混合模型结合起来的建模方法, 并同时提出的运用距离加权的矢量量化方法获取初始值,并采用衡量相似度的方法来融合高斯分量.从对比结果可以看出,基于聚类的高斯混合模型的说话人识别相对于传统的高斯混合模型在识别率上有所提高. ------------------------------ 高斯模型有单高斯模型(SGM)和混合高斯模型(GMM)两种. (1)单高斯模型: 为简单起见,阈值t的选取一般靠经验值…