pandas 数据子集的获取】的更多相关文章

有时数据读入后并不是对整体数据进行分析,而是数据中的部分子集,例如,对于地铁乘客量可能只关心某些时间段的流量,对于商品的交易可能只需要分析某些颜色的价格变动,对于医疗诊断数据可能只对某个年龄段的人群感兴趣等.所以,该如何根据特定的条件实现数据子集的获取将是本节的主要内容. 通常,在pandas模块中实现数据框子集的获取可以使用iloc,loc和ix三种‘方法’,这三种方法既可以对数据进行筛选,也可以实现变量的挑选,它们的语法可以表示 成[row_select,cols_select]. iloc…
pandas数据预处理 / pandas data pre-processing 目录 关于 pandas pandas 库 pandas 基本操作 pandas 计算 pandas 的 Series pandas 常用函数 补充内容 1 关于pandas / About pandas Pandas起源 Python Data Analysis Library或pandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效…
pandas数据操作 字符串方法 Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素 t = pd.Series(['a_b_c_d','c_d_e',np.nan,'f_g_h']) t t.str.cat(['A','B','C','D'],sep=',') #拼接字符串 t.str.split('_') #切分字符串 t.str.get(0) #获取指定位置的字符串 t.str.replace("_", ".") #替…
参考链接:https://www.highcharts.com.cn/docs/process-text-data-file 1.javascript代码 var options = { chart: { type: 'column' }, title: { text: '水果消费情况' }, xAxis: { categories: [] }, yAxis: { title: { text: '单位' } }, series: [] }; var csvData = document.getE…
1.pandas数据的读取 pandas需要先读取表格类型的数据,然后进行分析 数据说明 说明 pandas读取方法 csv.tsv.txt 用逗号分割.tab分割的纯文本文件 pd.read_csv excel 微软xls或者xlsx文件 pd.read_excel mysql 关系向数据库表 pd.read_sql #本代码示例: import pandas as pd #导入包 #1读取csv,使用默认的标题行.逗号分割 fpath = “要打开文件的路径” ratings = pd.re…
在GUI开发中,往往需要在界面中存储一些有用的数据,这些数据可以来配置文件.注册表.数据库.或者是server. 无论来自哪里,这些数据对于用户来说都是至关重要的,它们在交互过程中大部分都会被用到,例如:单击一个用户头像,显示该用户的详细信息(等级.昵称.姓名.个人说明). 简述 常见接口 数据源 setData和data 单独存储 整体存储 setItemData和itemData setUserData和userData 自定义数据 常见接口 Qt中,可以通过绝大部分已有的接口来存数数据.获…
上文介绍了,如何生成序列,本文介绍一下如何取出其数据子集 取出元素的逻辑值 > x<-c(0,-3,4,-1,45,90,5) > x>0 [1] FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE 取出符合条件的值的值 > x[x>0] [1]  4 45 90  5 > x[x>5 | x<(-2)] [1] -3 45 90 > x[x>1 & x<20] [1] 4 5 用负号‘-’排除…
Pandas数据特征分析 数据的排序 将一组数据通过摘要(有损地提取数据特征的过程)的方式,可以获得基本统计(含排序).分布/累计统计.数据特征(相关性.周期性等).数据挖掘(形成知识). .sort_index()方法在指定轴上根据索引进行排序,默认升序 .sort_index(axis=0, ascending=True) In [1]: import pandas as pd In [2]: import numpy as np In [3]: b = pd.DataFrame(np.ar…
http://blog.csdn.net/pipisorry/article/details/52208727 数据输入输出 数据pickling pandas数据pickling比保存和读取csv文件要快2-3倍(lz测试不准,差不多这么多). ltu_df.to_pickle(os.path.join(CWD, 'middlewares/ltu_df')) ltu_df = pd.read_pickle(os.path.join(CWD, 'middlewares/ltu_df')) [re…