离散傅里叶变换DFT入门】的更多相关文章

网上对于傅里叶变换相关的文章很多(足够多),有的是从物理相关角度入场,有的从数学分析角度入场.对于有志学习相关概念的同学还是能够很好的理解的. 数学包括三大块:代数学.几何.数学分析.前两块我们在中学阶段一直在用,数学分析(非数学专业以高等数学入门)在大学开始接触 本文从更简单(最简单)的解析几何角度尝试讲一点DFT的入门概念. 解析几何就是把几何用代数学表示,引入了平面直角坐标系,是高中数学的主要部分 一.复数和单位复数根 复数我们在高中已经接触过了.当时为了强调二次方程一定有两个根(而不是更…
学习DIP第23天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 开篇废话 一如既往的开篇废话,今天介绍离散傅里叶变换(DFT),学习到这,不敢说对傅里叶有多了解,…
转:https://blog.csdn.net/zhangxz259/article/details/81627341 什么是离散傅里叶变换 matlab例子 本文是从最基础的知识开始讲解,力求用最通俗易懂的文字将问题将的通俗易懂,大神勿喷,多多指教啊,虽然说是从零学习FFT,但是基本的数学知识还是要有的,sin,cos,等. FFT(快速傅里叶变换)其本质就是DFT,只不过可以快速的计算出DFT结果,要弄懂FFT,必须先弄懂DFT,DFT(DiscreteFourier Transform) …
%用二重循环实现DFT: function xk=dt_0(xn); %define a function N=length(xn); %caculate the length of the variable WN=exp(-j.*.*pi./N); xk=zeros(,N); %define a non-zero 一维矩阵 sum=zeros(,N); %define a non-zero 一维矩阵 :N %二重循环实现离散傅里叶变换DFT :N sum(n)=xn(n).*WN.^(k.*n…
基础知识 复数表示 C = R + jI 极坐标:C = |C|(cosθ + jsinθ) 欧拉公式:C = |C|ejθ 有关更多的时域与复频域的知识可以学习复变函数与积分变换,本篇文章只给出DFT公式,性质,以及实现方法 二维离散傅里叶变换(DFT) 其中f(x,y)为原图像,F(u,v)为傅里叶变换以后的结果,根据欧拉公式可得,每个F(u,v)值都为复数,由实部和虚部组成 代码示例 void dft(short** in_array, double** re_array, double*…
离散傅里叶变换 #include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/highgui/highgui.hpp" #include <iostream> using namespace cv; //-----------------------------------[ShowHelpText( )函数]----…
离散傅里叶变换 作用:得到图像中几何结构信息 结论:傅里叶变换后的白色部分(即幅度较大的低频部分),表示的是图像中慢变化的特性,或者说是灰度变化缓慢的特性(低频部分). 傅里叶变换后的黑色部分(即幅度低的高频部分),表示图像中快变化的特性,或者说是灰度变化快的特性(高频部分). dft()函数 函数原型 void dft(InputArray src, OutputArray dst, int flage=0, int nonzeroRow=0) InputArray 类型的src.输入矩阵,可…
目录     一.研究的意义     二.DFT的定义    三.DFT与傅里叶变换和Z变换的关系     四.DFT的周期性     五.matlab实验       五.1 程序          五.2 实验结果 一.研究的意义 DTFT计算公式,中的w取值是连续的而且从负无穷大到正无穷大,对于计算机处理是不可能的,需要无限细分无限区间.即使在DTFT小节中用matlab实现计算,也只是将(-pi,pi)区间划分成1600份来逼近DTFT的效果. 实际上真正用的是DFT,离散傅里叶变换.离…
我是做Tracking 的,对于速度要求非常高.发现傅里叶变换能够使用. 于是学习之. 核心: 最根本的一点就是将时域内的信号转移到频域里面.这样时域里的卷积能够转换为频域内的乘积! 在分析图像信号的频率特性时,对于一幅图像,直流分量表示预想的平均灰度.低频分量代表了大面积背景区域和缓慢变化部分,高频部分代表了它的边缘,细节,跳跃部分以及颗粒噪声.  因此,我们能够做对应的锐化和模糊的处理:提出当中的高频分量做傅里叶逆变换得到的就是锐化的结果. 提出当中的低频分量做傅里叶逆变换得到的就是模糊的结…
▎前言 小编相当的菜,这篇博客难度稍高,所以有些可能不会带有证明,博客中更多的是定义. 我们将要学到的东西: 复数 暴力多项式乘法 DFT 当然,小编之前就已经写过一篇博客了,主要讲的就是基础多项式,如果你已经会了下面的内容就无需学了,否则请进入传送门. 环和域 多项式 卷积 多项式乘法 多项式点值表示 多项式的根 单位根 ▎复数 ☞『引入』 其实小编早就应该讲复数了,但是上次忘了讲,那么这次一定要补上,好了,切入正题: 如果你信誓旦旦的在初中卷子上不判断根号下(√)的数是否是负数,那么你极有可…