快速幂模n运算】的更多相关文章

模运算里的求幂运算,比如 5^596 mod 1234, 当然,直接使用暴力循环也未尝不可,在书上看到一个快速模幂算法 大概思路是,a^b mod n ,先将b转换成二进制,然后从最高位开始(最高位一定为1),如果遇到一个b[i]=0,则那么此时的结果就是b[i+1]时的结果的平方,若果b[i]=1,则结果是b[i+1]时的结果的平方再乘一个a 从b的角度理解,比如,二进制为 100 ,此时b=4,当下一位为0时,也就是 1000,即b=8,则此时的a^8=(a^4)^2 ,若果下一位为1,即二…
题目链接 https://www.luogu.org/problemnew/show/P1226 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出"b^p mod k=s" s为运算结果 输入输出样例 输入样例#1: 2 10 9 输出样例#1: 2^10 mod 9=7 这道题有各种各样的做法,来整理一下几种思路吧 做法1(来自一本通) 思路 1.本题主要的难点在于数据规模很大(b…
题目链接:http://codeforces.com/contest/327/problem/C 首先先算出一个周期里面的值,保存在ans里面,就是平常的快速幂模m做法. 然后要计算一个公式,比如有k个部分,那么对于没一个位置i, 都有2^i + 2^(i+n) + ... + 2^(i+(k-1)*n) = 2^i(1 + 2^n + ... + 2^((k-1)*n)) = 2^i * (1-2^(n*k))/(1-2^n) 所以结果就是ans * (1-2^(n*k))/(1-2^n) %…
题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算法原理 . 看到这个算法之后,就知道这个题是求cd≡m(mod n),要求m,就要先求d,而d则是e的模反元素. 如果两个正整数a和n互质,那么一定可以找到整数b,使得 ab-1 被n整除,或者说ab被n除的余数是1.这时,b就叫做a的模反元素. 由模反元素可知,ed≡1(mod Phi[n])(p…
The Luckiest number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 980    Accepted Submission(s): 301 Problem Description Chinese people think of '8' as the lucky digit. Bob also likes digit '8…
题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少时最少的个数,rb代表1最多时的个数.一张牌翻两次和两张牌翻一次 得到的奇偶性相同,所以结果中lb和最多的rb的奇偶性相同.如果找到了lb和rb,那么,介于这两个数之间且与这两个数奇偶性相同的数均可取到,然后在这个区间内求组合数相加(若lb=3,rb=7,则3,5,7这些情况都能取到,也就是说最后的…
Beijing 2008 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)Total Submission(s): 741    Accepted Submission(s): 291 Problem Description As we all know, the next Olympic Games will be held in Beijing in 2008. So the…
要求 实现模幂算法,通过服务器的检验. 访问http://2**.207.12.156:9012/step_04服务器会给你10个问题,每个问题包含三个数(a,b,c),请给出a^b%c的值.返回值写入字段ans,10个数字用逗号,隔开,提交到http://2**.207.12.156:9012/step_04 提示:注意逗号必须是英文逗号. {"is_success": true, "questions": "[[1336, 9084, 35083099…
输入\(b\),\(p\),\(k\)的值,求\(b^p mod k\)的值.其中\(b\),\(p\),\(k^2\)为长整型数. 1.普通做法 \(print\) \(pow(b,p)\)\(mod\)\(k\) 详见数据范围.于是我们需要手动执行幂运算. 2.依然是普通做法 for (int i=1;i<=p;i++) { ans*=b; ans%=k; } T飞吧qwq 3.(依靠位运算的)快速幂 不想解释--太懒了(累) (毕竟这种东西解释起来需要大量LaTeX) 当作一篇保存的模板吧…
题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 S1:用快速幂快速的求出a^b 原理 (1)如果将 a 自乘一次,就会变成 a^2 .再把 a^2 自乘一次就会变成 a^4 .然后是 a^8…… 自乘 n 次的结果是 a^(2^n) . (2)a^x*a^y = a^(x+y). (3)将 b 转化为二进制观看一下: 举个栗子:     a^11=a^…