np.eye()】的更多相关文章

今天在完成深度学习的相关编程作业的时候,发现代码中出现了一个关于np.eye()的函数,这个函数的用法非常的简单,但是在预制的代码中,这个函数的用法并非单单制造一个对角矩阵,而是通过其来将一个label数组,大小为(1,m)或者(m,1)的数组,转化成one-hot数组.例如他可以将类别总数为6的labels=[1,2,3,0,1,1]的数组转化成数组[[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,0],[0,1,0,0,0,0],[0…
import numpy as np; 两者在创建单位矩阵上,并无区别,两者的区别主要在接口上: np.identity(n, dtype=None):只能获取方阵,也即标准意义的单位阵: np.eye(N, M=None, k=0, dtype=<type 'float'>): N : int,Number of rows in the output.(行数,必选) M : int, optional,Number of columns in the output. If None, def…
1.np.ceil()函数 np.ceil()函数为朝正无穷方向取整 a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) print(np.ceil(a)) 输出结果为:[-1. -1. -0.  1.  2.  2.  2.] 注意:该函数是直接对原列表进行修改 2.np.linspace() 生成等差数列 参数为(start, stop, num=50, endpoint=True, retstep=False, dtype=None)…
1.np.array构造函数 用法:np.array([1,2,3,4,5]) 1.1 numpy array 和 python list 有什么区别? 标准Python的列表(list)中,元素本质是对象.如:L = [1, 2, 3],需要3个指针和三个整数对象,对于数值运算比较浪费内存和CPU.因此,Numpy提供了ndarray(N-dimensional array object)对象:存储单一数据类型的多维数组. 1.2 如何强制生成一个 float 类型的数组 d = np.arr…
转自:https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.linalg.html 1.分解 //其中我觉得可以的就是svd奇异值分解吧,虽然并不知道数学原理 np.linalg.svd(a, full_matrices=1, compute_uv=1) a是要分解的(M,N)array; full_matrices : bool, optional If True (default), u and v have the shape…
PS:本博文摘抄自中国慕课大学上的课程<Python数据分析与展示>,推荐刚入门的同学去学习,这是非常好的入门视频. #np模块 .ndim :维度 .shape :各维度的尺度 (2,5) .size :元素的个数 10 .dtype :元素的类型 dtype(‘int32’) .itemsize :每个元素的大小,以字节为单位 ,每个元素占4个字节 ndarray数组的创建 np.arange(n) ; 元素从0到n-1的ndarray类型 np.ones(shape): 生成全1 np.…
将列表list或元组tuple转换为 ndarray 数组. numpy.array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0) object:列表.元组等.dtype:数据类型.如果未给出,则类型为被保存对象所需的最小类型.copy:布尔来写,默认 True,表示复制对象.order:顺序.subok:布尔类型,表示子类是否被传递.ndmin:生成的数组应具有的最小维数. -- 1.np.array构造函数…
Numpy是科学计算库,是一个强大的N维数组对象ndarray,是广播功能函数.其整合C/C++.fortran代码的工具 ,更是Scipy.Pandas等的基础 .ndim :维度 .shape :各维度的尺度 (2,5) .size :元素的个数 10 .dtype :元素的类型 dtype('int32') .itemsize :每个元素的大小,以字节为单位 ,每个元素占4个字节 ndarray数组的创建 np.arange(n) ; 元素从0到n-1的ndarray类型 np.ones(…
1.一维数组中寻找与某个数最近的数 # 一维数组中寻找与某个数最近的数 Z=np.random.uniform(0,1,20) print("随机数组:\n",Z) z=0.5 m=Z.flat[np.abs(Z-z).argmin()] m 随机数组: [0.87249114 0.64595395 0.10142435 0.46202885 0.15948433 0.53886897 0.17802543 0.0885369 0.9859855 0.92086206 0.946945…
numpy.eye(N,M=None, k=0, dtype=<type 'float'>) 关注第一个第三个参数就行了 第一个参数:输出方阵(行数=列数)的规模,即行数或列数 第三个参数:默认情况下输出的是对角线全“1”,其余全“0”的方阵,如果k为正整数,则在右上方第k条对角线全“1”其余全“0”,k为负整数则在左下方第k条对角线全“1”其余全“0”. >>> np.eye(, dtype=int) array([[, ], [, ]]) >>> np.…