knn算法原理 ①.计算机将计算所有的点和该点的距离 ②.选出最近的k个点 ③.比较在选择的几个点中那个类的个数多就将该点分到那个类中 KNN算法的特点: knn算法的优点:精度高,对异常值不敏感,无数据假设 knn算法的缺点:时间复杂度和空间复杂度都比较高 knn算法中遇到的问题及其解决办法 1.当样本不平衡时,比如一个类的样本容量很大,其他类的样本容量很小,输入一个样本的时候,K个临近值中大多数都是大样本容量的那个类,这时可能就会导致分类错误.改进方法是对K临近点进行加权,也就是距离近的点的…