FFT中的一个常见小问题这里不细说FFT的内容,详细内容看这些就足以了解大概了小学生都能看懂的FFT!!!FFT详解补充——FFT中的二进制翻转问题主要是对学习过程中一个容易困扰的小问题进行解释,以便于理解    用FFT将多项式的系数转换为点值时,原系数数组a最后存的是不同的点值,而不是只有第一个是点值    这一点最开始困扰了我很久    设A(x)=a0+a1x+a2x2+...+an−1xn−1    则可将其移项A(x)=(a0+a2x2+...+an−2xn−2)+(a1x+a3x3…
这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你一个 n 行m 列 的格子图 一只马从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行. 题意很简单暴力dp的思路也很简单但是数据很恶心虽然远古一点,但毕竟是省选题 1 ≤ n ≤ 50,2 ≤ m ≤ 10^9 不过还是给了我们一点提示:n这么小? 总之我们先找出转移式对于每一个点…
https://vijos.org/p/1067 守望者-warden,长期在暗夜精灵的的首都艾萨琳内担任视察监狱的任务,监狱是成长条行的,守望者warden拥有一个技能名叫“闪烁”,这个技能可以把她传送到后面的监狱内查看,她比较懒,一般不查看完所有的监狱,只是从入口进入,然后再从出口出来就算完成任务了. 描述 头脑并不发达的warden最近在思考一个问题,她的闪烁技能是可以升级的,k级的闪烁技能最多可以向前移动k个监狱,一共有n个监狱要视察,她从入口进去,一路上有n个监狱,而且不会往回走,当然…
题意:有一个递推式f(x) 当 x < 10    f(x) = x.当 x >= 10  f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + -- + a9 * f(x-10) 同时ai(0<=i<=9) 不是 0 就是 1: 现在给你 ai 的数字,以及k和mod,请你算出 f(x)%mod 的结果是多少 思路:线性递推关系是组合计数中常用的一种递推关系,如果直接利用递推式,需要很长的时间才能计算得出,时间无法承受,但是现在我们已知…
题目描述 WYF手中有这样一条递推式 WYF并不是想让你帮他做出结果,事实上,给定一个n,他能够迅速算出Fn.WYF只是想单纯的考验一下读者们. 输入描述 仅一行,三个整数N,F1,P 输出描述 仅一行,表示Fn模P的余数. 样例输入 5 1 100 样例输出 41 注释 对20%的数据,N≤1000. 对50%的数据,N≤10000000. 对100%的数据,N.F1≤1018,P≤109 解题思路 N<=1e18,最后的复杂度应该是O(1)或者O(lg(N)) 直接模拟式o(N^2)的,显然…
这里所有的内容都将有关于一个线性递推: $f_{n} = \sum\limits_{i = 1}^{k} a_{i} * f_{n - i}$,其中$f_{0}, f_{1}, ... , f_{k - 1}$是已知的. BM是用于求解线性递推式的工具,传入一个序列,会返回一个合法的线性递推式,一个$vector$,其中第$i$项表示上式的$a_{i + 1}$. CH用于快速求解常系数齐次线性递推的第$n$项,我们先会求出一个特征多项式$g$,$g$的第$k$项是$1$,其余项中第$k - i…
基准时间限制:1 秒 空间限制:131072 KB 分值: 640 F(x) = 1 (0 <= x < 4) F(x) = F(x - 1) + F(x - pi) (4 <= x) Pi = 3.1415926535..... 现在给出一个N,求F(N).由于结果巨大,只输出Mod 10^9 + 7的结果即可.   Input 输入一个整数N(1 <= N <= 10^6) Output 输出F(N) Mod 10^9 + 7 Input示例 5 Output示例 3 数…
题目传送门 题目描述:给出一个数列的第一项和第二项,计算第n项. 递推式是 f(n)=f(n-1)+2*f(n-2)+n^4. 由于n很大,所以肯定是矩阵快速幂的题目,但是矩阵快速幂只能解决线性的问题,n^4在这个式子中是非线性的,后一项和前一项没有什么直接关系,所以模拟赛的时候想破头也不会做. 这里要做一个转换,把n^4变成一个线性的,也就是和(n-1)^4有关系的东西,而这个办法就是: n^4=(n-1+1)^4=(n-1)^4+4*(n-1)^3+6*(n-1)^2+4*(n-1)^1+(…
题意:个n个方块涂色, 只能涂红黄蓝绿四种颜色,求最终红色和绿色都为偶数的方案数. 该题我们可以想到一个递推式 .   设a[i]表示到第i个方块为止红绿是偶数的方案数, b[i]为红绿恰有一个是偶数的方案数, c[i]表示红绿都是奇数的方案数. 那么有如下递推可能: 递推a[i+1]:1.到第i个为止都是偶数,且第i+1个染成蓝或黄:2.到第i个为止红绿恰有一个是奇数,并且第i+1个方块染成了奇数对应的颜色. 递推b[i+1]:1.到第i个为止都是偶数,且第i+1个染成红或绿:2.到第i个为止…
[背诵瞎讲] Cayley-Hamilton 常系数齐次线性递推式第n项的快速计算 (m=1e5,n=1e18) 看CSP看到一题"线性递推式",不会做,去问了问zsy怎么做,他并不想理我并丢给我以下方法: \[ \text{Cayley-Hamilton} \] 下文会根据CH定理证明的思路证明,没有形式上使用特征系统,因为我也不会... 一句话就是求: \[ f_n=\sum_{i=1}^m c_if_{n-i} \mod 998244353 \] 但这个算法卡常,zsy说1e5估…
Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 6639    Accepted Submission(s): 2913 Problem Description Queues and Priority Queues are data structures which are known to most computer…
题目链接 题意 给定\(c_0,c_1,求c_n(c_0,c_1,n\lt 2^{31})\),递推公式为 \[c_i=c_{i-1}+2c_{i-2}+i^4\] 思路 参考 将递推式改写\[\begin{pmatrix}f(n)\\f(n-1)\\n^4\\n^3\\n^2\\n\\1\end{pmatrix}=\begin{pmatrix}1&2&1&4&6&4&1\\1&0&0&0&0&0&0\\0&a…
定义 若数列 \(\{a_i\}\) 满足 \(a_n=\sum_{i=1}^kf_i \times a_{n-i}\) ,则该数列为 k 阶齐次线性递推数列 可以利用多项式的知识做到 \(O(k\log k \log n)\) 求第 n 项. 如果给出前 k 项,想知道 \(f_i\) ,可以在 \(O(k^2)\) 的时间内求出. 求 \(f_i\) 有 Berlekamp Massey 算法和 Reeds Sloane 算法,具体算法思想是啥咱也不知道,咱只知道这东西放进去就能跑. 前者需…
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d      C D   =   c*A+d*C  c*A+d*C 上代码 struct matrix { ll a[maxn][maxn]; }; matrix matrix_mul(matrix x,matrix y) { matrix temp; ;i<=n;i++) ;j<=n;j++) { tem…
是斐波那契数列问题 假设f(n)是n个台阶跳的次数:(假设已经调到第n个台阶,最后一次是由哪个台阶跳上来的) f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) == f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) == f(n) = 2*f(n-1) 所以,可以得出递推式: public static int jumpFloor(int n) { if (n <= 0) return 0; if (n =…
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=1757 A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 6621    Accepted Submission(s): 4071 Problem Description Lele now is thin…
历史性的时刻!!! 推了一晚上!和hyc一起萌萌哒地推出来了!! 被摧残蹂躏的智商啊!!! 然而炒鸡高兴!! (请不要介意蒟蒻的内心独白..) 设a[i]为扫到第i行时的方案数. 易知,对于一行1*4的格子,只有一种方案把它铺满. 首先,对于当前的第i行,如果它不和第i-1行有联系(也就是它是独立的一行),那么就有1*a[i-1]=a[i-1]种方案. 如果第i行和第i-1行有联系(2行间互相联系),那么共有一下四种方案: 如果第i行.第i-1行.第i-2行都有联系(3行间两两联系),那么共有两…
题意 设 $y = (5+2\sqrt 6)^{1+2^x}$,给出 $x, M$($0\leq x \leq 2^{32}, M \leq 46337$),求 $[y]\%M$. 分析 由通项推递推式?? 设 $A_n = (5 + 2\sqrt 6)^n, B_n = (5 - 2\sqrt 6)^n,C_n = A_n + B_n$, 显然 $C_n$ 是整数,且 $B_n$ 是小于1的,所以答案就是 $C_n - 1$. 通过推导: $C_n = A_n + B_n = (5+2\sqr…
BM算法求求线性递推式   P5487 线性递推+BM算法   待AC.   Poor God Water   // 题目来源:ACM-ICPC 2018 焦作赛区网络预赛 题意   God Water喜欢吃Meat, Fish 和 Chocolate,每个小时他会吃一种食物,但有些吃的顺序是危险/不高兴的.求在N小时内他的饮食方案有多少种不同组合.在连续三小时内这些组合是不可行的: unhappy : MMM FFF CCC dangerous : MCF FCM CMC CFC   思路1…
Covering Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3078    Accepted Submission(s): 1117 Problem Description Bob's school has a big playground, boys and girls always play games here after s…
题目大意:给定序列 1, 2, 5, 10, 21, 42, 85, 170, 341 …… 求第n项 模 m的结果 递推式 f[i]  = f[i - 2] + 2 ^ (i - 1); 方法一: 构造矩阵, 求递推式 方法二: 直接推公式,递推式求和,得到 f[n] = [2 ^ (n + 1) - 1] / 3 奇数, f[n] = [2 ^ (n + 1) - 2] / 3 偶数: 其实还可以进一步化简, 注意到 2 ^ 2k % 3 = 1, 2 ^ (2k + 1) % 3 = 2,…
题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医生告诉他,他吃这些零食的时候,如果在连续的三小时内他三种都吃了,并且在中间一小时 吃的是巧克力,他就会食物中毒.并且,如果河神在连续三小时内吃到相同种类的食物,他就会不开心. 假设每种类零食的数量都是无限的,那么如果经过n小时,让河神满意的零食吃法有多少种呢?(开心又不 会食物中毒的吃法)答案可能过…
分析: 我们可以写把转移矩阵A写出来,然后求一下它的特征多项式,经过手动计算应该是这样的p(x)=$x^k-\sum\limits_{i=1}^ka_i*x^{k-i}$ 根据Cayley-Hamilton定理可得,p(A)=0 他表示$A^n = f(A) * p(A) + g(A)$ 第一项的值是0,所以即$A^n=g(A)$,其中f(A) g(A)都是关于A的多项式,f(A)是多项式除法的商,g(A)是余数 我们考虑$x^n$这个多项式,我们去求出它对于$p(A)$的余数多项式$g(A)$…
传送门 解题思路 首先因为\(Pi\)不是整数,所以不能直接递推.这时我们要思考这个式子的实际意义,其实\(f(i)\)就可以看做从\(i\)这个点,每次可以向右走\(Pi\)步或\(1\)步,走到[0.4)的方案数.这样的话我们就可以枚举一下走一步的次数\(i\),然后走\(Pi\)步的次数就是\(\left\lfloor\dfrac{n-i}{Pi}\right\rfloor\).最后还要讨论一下最后一步能不能走\(1\)步,然后用组合数算一下. 代码 #include<iostream>…
1.问题: 本人是在WIN7下用texlive 2016,编辑器用的是WinEdt 10.1 ,运行如下代码: \documentclass{ctexbook} \begin{document} \title{中文 \LaTeX{} 测试} \author{姓名} \maketitle \tableofcontents \chapter{测试} 中文测试. \chapter{再测试} 中文测试. \end{document} 返回如下错误: ! Improper alphabetic const…
--长度减一就可以了 select left(字段名,len(字段名)-1) from 表名…
                                  评:蝴蝶效应[蝴蝶效应(The Butterfly Effect)是指在一个动力系统中,初始条件下微小的变化能带动整个系统的长期的巨大的连锁反应.这是一种混沌现象.任何事物发展均存在定数与变数,事物在发展过程中其发展轨迹有规律可循,同时也存在不可测的“变数”,往往还会适得其反,一个微小的变化能影响事物的发展,说明事物的发展具有复杂性.]https://baike.baidu.com/item/%E8%9D%B4%E8%9D%B6…
Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description 2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列 (f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2))的值全部给背了下来. 接下来,CodeStar决定要考考他,于是每问他一…
题目:https://loj.ac/problem/3090 题解:https://www.luogu.org/blog/rqy/solution-p5320 1.用斯特林数把下降幂化为普通的幂次求和 2.找出通项公式,使得幂次变成二项式,进而将 [ l , r ] 的部分变成等比数列求和 3.模 998244353 下没有 \( \sqrt{5} \) ,所以“扩域”,就是把数表示成 \( a+b*\sqrt{5} \) :\( \sqrt{3} \) 也同理 注意扩域之后,不满足费马小定理,…
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1149 F(x) = 1 (0 <= x < 4) F(x) = F(x - 1) + F(x - pi) (4 <= x) Pi = 3.1415926535..... 现在给出一个N,求F(N).由于结果巨大,只输出Mod 10^9 + 7的结果即可. 不好想啊……以及我曾经打了个表,并且还找到了规律,结果过到29就gg了…… 参考:https://www.c…