这是一次由于路径问题(找不到模型)引出模型保存问题的记录 最近,我试着把使用GPU训练完成的模型部署至预发布环境时出现了一个错误,以下是log节选 unpickler.load() ModuleNotFoundError: No module named 'model' 问题分析 当时我很奇怪,因为这个模型在本地环境测试已经通过了 从错误本身来看,程序是没有找到我们的模型 那么这里可能是路径设置有误 这是训练结束用于本地测试的目录树 解决办法 我添加了一个与src并行的包test用于复现问题 到…
『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 参数名称 功能说明 默认值 var_list Saver中存储变量集合 全局变量集合 reshape 加载时是否恢复变量形状 True sharded 是否将变量轮循放在所有设备上 True max_to_keep 保留最近检查点个数 5 restore_sequentially 是否按顺序恢复变量,模型…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次100张照片 batch_size = 100 #计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size #定义两…
https://blog.csdn.net/u012884015/article/details/78653178 xgb_model.get_booster().save_model('xgb.model') tar = xgb.Booster(model_file='xgb.model') x_test = xgb.DMatrix(x_test) pre=tar.predict(x_test) act=y_test print(mean_squared_error(act, pre))…
在使用Tensorflow时,我们经常要将以训练好的模型保存到本地或者使用别人已训练好的模型,因此,作此笔记记录下来. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取.tf.train.Saver对象saver的save方法将TensorFlow模型保存到指定路径中,如:saver.save(sess, "/Model/model"), 执行完,在相应的目录下将会有4个文件: meta:文件保存的是图结构信息,meta文件是pb(protocol b…
参考学习博客: # https://www.cnblogs.com/felixwang2/p/9190692.html 一.模型保存 # https://www.cnblogs.com/felixwang2/p/9190692.html # TensorFlow(十三):模型的保存与载入 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 载入数据集 mnist = input_…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/8108466.html 参考网址: http://pytorch.org/docs/master/notes/serialization.html https://github.com/clcarwin/sphereface_pytorch 有两种方式保存和载入模型 1. 只保存和载入模型参数 保存: torch.save(the_model.state_dict(), PATH) 载入: the_m…
分词(Tokenization) - NLP学习(1) N-grams模型.停顿词(stopwords)和标准化处理 - NLP学习(2) 文本向量化及词袋模型 - NLP学习(3-1) 在上一篇博文中,简单地阐述了如何将文本向量化及词袋模型的.文本向量化是为了将文本转换成机器学习算法可以直接处理的数字,直白点说就是这些转换后数字代表了文本的特征(此过程称之为特征提取或者特征编码),可以直接为机器学习模型所用.词袋模型(Bag-of-Words: BOW)则指的是统计单词在一个文本中出现的次数的…
我们在上线使用一个算法模型的时候,首先必须将已经训练好的模型保存下来.tensorflow保存模型的方式与sklearn不太一样,sklearn很直接,一个sklearn.externals.joblib的dump与load方法就可以保存与载入使用.而tensorflow由于有graph, operation 这些概念,保存与载入模型稍显麻烦. 一.基本方法 网上搜索tensorflow模型保存,搜到的大多是基本的方法.即 保存 定义变量 使用saver.save()方法保存 载入 定义变量 使…
一.模型的保存:tf.train.Saver类中的save TensorFlow提供了一个一个API来保存和还原一个模型,即tf.train.Saver类.以下代码为保存TensorFlow计算图的方法: 二.模型的读取:tf.train.Saver类中的restore 注意:需要重新定义的变量大小和保存的模型变量大小需相同 通过以上方式保存和加载了TensorFlow计算图上定义的全部变量.但有时候只需要保存和加载部分变量, 比如:之前训练好了一个五层的神经网络模型,现想尝试一个六层的神经网络…