目录 概 主要内容 本文的模型 Identifiability Khemakhem I., Kingma D. P., Monti R. P. and Hyv"{a}rinen A. Variational autoencoders and nonlinear ICA: a unifying framework. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2020. 概 本文讨…
Understanding Variational Autoencoders (VAEs) 2019-09-29 11:33:18 This blog is from: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73 Introduction In the last few years, deep learning based generative models hav…
Conditional Variational Autoencoders --- 条件式变换自编码机 Goal of a Variational Autoencoder: 一个 VAE(variational autoencoder)是一个产生式模型,意味着我们可以产生看起来像我们的训练数据的 samples.以 mnist 数据集为例,这些伪造的样本可以看做是手写字体的合成图像.我们的 VAE 将会提供我们一个空间,我们称之为 latent space (潜在空间),我们可以从这里采样出 po…
本是neural network的内容,但偏偏有个variational打头,那就聊聊.涉及的内容可能比较杂,但终归会 end with VAE. 各个概念的详细解释请点击推荐的链接,本文只是重在理清它们之间的婆媳关系. 无意中打开了:中国科大iGEM项目报告,感慨颇多,尤其是时光,这其中也包含了写这系列文字的目的. 在技术上不得不走了不少弯路,每当无意间回首,对于那些”没机会“走弯路的同学们,是羡慕的:对于不懂得珍惜机会的同学们,也是充满惋惜. 希望,透过这些文字,能唤醒一些东西,助你找到正确…
Conditional Variational Autoencoders 条件式变换自编码机 摘要: Conditional Variational Autoencoders --- 条件式变换自编码机    Goal of a Variational Autoencoder:  一个 VAE(variational autoencoder)是一个产生式模型,意味着我们可以产生看起来像我们的训练数据的 samples. Conditional Variational Autoencoders -…
基于图嵌入的高斯混合变分自编码器的深度聚类 Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 引言 这篇博文主要是对论文“Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embe…
目录 概 主要内容 代码 Tomczak J. and Welling M. Improving Variational Auto-Encoders using Householder Flow. NIPS workshop: Bayesian Deep Learning, 2016. 概 本文介绍了一种Normalizing FLow, 利用Householder变换. 主要内容 我们一般假设 \[q_{\phi} (z|x) = \mathcal{N}(z| \mu(x), \sigma^2…
目录 AE v.s. VAE Generative model VAE v.s. GAN AE v.s. VAE Generative model VAE v.s. GAN…
Problem: unsupervised anomaly detection Model: VAE-reEncoder VAE with two encoders and one decoder. They use bidirectional bow-tie LSTM for each part. Why use bow-tie model: to remove noise to some extent when encoding.…
Agustinus Kristiadi's Blog TECH BLOG TRAVEL BLOG PORTFOLIO CONTACT ABOUT Variational Autoencoder: Intuition and Implementation There are two generative models facing neck to neck in the data generation business right now: Generative Adversarial Nets…
目录 Outline Auto-Encoder 创建编解码器 训练 Outline Auto-Encoder Variational Auto-Encoders Auto-Encoder 创建编解码器 import os import tensorflow as tf import numpy as np from tensorflow import keras from tensorflow.keras import Sequential, layers from PIL import Ima…
博客作者:凌逆战 论文地址:https://ieeexplore.ieee.xilesou.top/abstract/document/8683611/ 地址:https://www.cnblogs.com/LXP-Never/p/10714401.html 利用条件变分自动编码器进行人工带宽扩展的潜在表示学习 作者:Pramod Bachhav, Massimiliano Todisco and Nicholas Evans 摘要 当宽带设备与窄带设备或基础设施一起使用时,人工带宽扩展(ABE…
转:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction:   SIFT [1] [Demo program][SIFT Library] [VLFeat]   PCA-SIFT [2] [Project]   Affine-SIFT [3] [Project]   SURF [4] [OpenSURF] [Matlab Wrapper]   Affine Covariant Features [5] [Oxfo…
Awesome Courses  Introduction There is a lot of hidden treasure lying within university pages scattered across the internet. This list is an attempt to bring to light those awesome courses which make their high-quality material i.e. assignments, lect…
from:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction:   SIFT [1] [Demo program][SIFT Library] [VLFeat]   PCA-SIFT [2] [Project]   Affine-SIFT [3] [Project]   SURF [4] [OpenSURF] [Matlab Wrapper]   Affine Covariant Features [5] [O…
转自:http://www.asimovinstitute.org/neural-network-zoo/ THE NEURAL NETWORK ZOO POSTED ON SEPTEMBER 14, 2016 BY FJODOR VAN VEEN   With new neural network architectures popping up every now and then, it's hard to keep track of them all. Knowing all the a…
1.平面操作工具箱 http://cathy.ijs.si/~leon/planman.html 2.SimMechanics 工具箱 (这个好像不是免费的) http://www.mathworks.com/access/helpdesk/help/toolbox/physmod/mech/mech.shtml 3.gaot工具箱(遗传算法工具箱) http://www.dytrol.com/viewFile.asp?Boardid=11&ID=263 4.Optimization Toolb…
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society 2017, ISBN 978-1-5386-1032-9 Oral Session 1 Globally-Optimal Inlier Set Maximisation for Simultaneous Camera Pose and Feature Corre…
MATLAB Toolboxes top (Top) Audio - Astronomy - BiomedicalInformatics - Chemometrics  - Chaos - Chemistry - Coding - Control - Communications - Engineering - Data Mining - Excel - FEM - Fuzzy - Finance - GAs - Graph - Graphics - Images - ICA - Kernel …
CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View Subspace Clustering Xiaojie Guo, Xiaobo Wang, Zhen Lei, Changqing Zhang, Stan Z. Li Borrowing Treasures From the Wealthy: Deep Transfer Learning Thro…
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:00:49 我今天讲PRML的第十二章,连续隐变量.既然有连续隐变量,一定也有离散隐变量,那么离散隐变量是什么?我们可能还记得之前尼采兄讲过的9.2节的高斯混合模型.它有一个K维二值隐变量z,不仅只能取0-1两个值,而且K维中只能有1维为1.其他维必须为0,表示我们观察到的x属于K类中的哪一类.显然,这里的隐变量z就是个离散隐变量.不过我们容易想到,隐变量未必像kmeans或GMM这种聚类算法那样,非此…
What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-beginner-train-for-machine-learning-contests 链接内容总结: "学习任何一门学科,framework是必不可少的东西.没有framework的东西,那是研究." -- Jason Hawk One thing is for sure; you ca…
科班出身,贝叶斯护体,正本清源,故拿”九阳神功“自比,而非邪气十足的”九阴真经“: 现在看来,此前的八层功力都为这第九层作基础: 本系列第九篇,助/祝你早日hold住神功第九重,加入血统纯正的人工智能队伍. 9. [Bayesian] “我是bayesian我怕谁”系列 - Gaussian Process 8. [Bayesian] “我是bayesian我怕谁”系列 - Variational Autoencoders 7. [Bayesian] “我是bayesian我怕谁”系列 - Bo…
文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 转自 | AI研习社 作者|Zonghan Wu 这是一个与图神经网络相关的资源集合.相关资源浏览下方Github项目地址,再点击对应链接跳转下载. 01Github项目地址: https://github.com/nnzhan/Awesome-Graph-Neural-Networks 02调查报告 A Comprehensive Survey on Graph Neural Networks. …
以下我为这篇<Rapid Deployment of Anomaly Detection Models for Large Number of Emerging KPI Streams>做的阅读笔记 - Jeanva Abstract Rapid deployment of anomaly detection models for large number of emerging KPI streams, without manual algorithm selection, paramete…
Awesome-Repositories-for-Text-Modeling repo paper miracleyoo/DPCNN-TextCNN-Pytorch-Inception Deep Pyramid Convolutional Neural Networks for Text Categorization Cheneng/DPCNN Deep Pyramid Convolutional Neural Networks for Text Categorization conv-RNN…
What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, My lab has been one of the three that started the deep learning approach, back in 2006, along with Hinton's... Answered Jan 20, 2016   Originally Ans…
Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯   徐亦达老板 Dirichlet Process 学习目标:Dirichlet Process, HDP, HDP-HMM, IBP, CRM Alex Kendall Geometry and Uncertainty in Deep Learning for Computer Vision 语义分割 colah's blog Feature Visu…
有位师兄收集了很多slam的学习资料, 做的很赞, 放到了github上, 地址:https://github.com/liulinbo/slam.git ruben update 0823 2016   01StableMatching.pdf 添加部分资料 2 years ago   1502.00956v2.pdf update by ruben 04/08/2016 a year ago   2013.2-第二届虚拟仪器大赛特等奖-结构化环境地图创建机器人.mp4 update by r…
中文版:https://zhuanlan.zhihu.com/p/27440393 原文版:https://www.oreilly.com/learning/generative-adversarial-networks-for-beginners “熟练tensorflow后,需研读实践的文章” 自从两年前蒙特利尔大学的Ian Goodfellow等人提出生成式对抗网络(Generative Adversarial Networks,GAN)的概念以来,GAN呈现出井喷式发展. // 竟然是G…