目录 概 主要内容 符号说明 Original Generator Transfer the Generator Wang X., He K., Guo C., Weinberger K., Hopcroft H., AT-GAN: A Generative Attack Model for Adversarial Transferring on Generative Adversarial Nets. arXiv preprint, arXiv: 1904.00783, 2019. 概 用GA…
Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks NIPS 2015  摘要:本文提出一种 generative parametric model 能够产生高质量自然图像.我们的方法利用 Laplacian pyramid framework 的框架,从粗到细的方式,利用 CNN 的级联来产生图像.在金字塔的每一层,都用一个 GAN,我们的方法可以产生更高分辨率的图像.    引言:在计算…
目录 概 主要内容 Samangouei P, Kabkab M, Chellappa R, et al. Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models.[J]. arXiv: Computer Vision and Pattern Recognition, 2018. @article{samangouei2018defense-gan:, title={Defen…
A Generative Entity-Mention Model for Linking Entities with Knowledge Base   一.主要方法 提出了一种生成概率模型,叫做entity-mention model. Explanation: In our model, each name mention to be linked is modeled as a sample generated through a three-step generative story,…
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples 目录 概 主要内容 实验设置 损失的影响 额外的数据 网络结构 其他的一些tricks Gowal S., Qin C., Uesato J., Mann T. & Kohli P. Uncovering the Limits of Adversarial Training against Norm-Bounded Adv…
0. 基于贝叶斯公式的生成式分类器 生成式分类器(generative classifier)即是已知类别得样本: p(y=c|x,θ)∝p(x|y=c,θ)p(y=c|θ) p(x|y=c,θ) 称为类条件概率(class-conditional probability/density),定义了 每个类别(y=c)中我们所期待得到的数据是什么样的.上述公式的等式形式如下: p(y=c|x,θ)=p(x|y=c,θ)p(y=c|θ)∑c′p(y=c′|θ)p(x|y=c′,θ) 这里仅以离散型随…
来自 http://deeplearning.net/tutorial/,虽然比较老了,不过觉得想系统的学习theano,所以需要从python--numpy--theano的顺序学习.这里的资料都很老了,毕竟看得出来应该是10年的,现在都15年了,综述还是什么都很不一样了,不过对于学习theano来说,还好没差.如果是想学习dl的原理的,推荐看其他的新综述和文章,这里的博文主要是为了学习theano,也就是主要工程上,不是学术上. 深度学习是机器学习研究中一个新的领域,是为了朝着机器学习的初衷…
Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,近期研究了机器学习中一些深度学习的相关知识,本文给出一些非常实用的资料和心得. Key Words:有监督学习与无监督学习.分类.回归.密度预计.聚类,深度学习,Sparse DBN, 1. 有监督学习和无监督学习 给定一组数据(input,target)为Z=(X,Y). 有监督学习:最常见的是regression & classification. regression:Y是实数ve…
Deep Learning Tutorial 由 Montreal大学的LISA实验室所作,基于Theano的深度学习材料.Theano是一个python库,使得写深度模型更容易些,也可以在GPU上训练深度模型.所以首先得了解python和numpy.其次,阅读Theano basic tutorial. Deep Learning Tutorial 包括: 监督学习算法: Logistic Regression - using Theano for something simple Multi…
四.拓展学习推荐 Deep Learning 经典阅读材料: The monograph or review paper Learning Deep Architectures for AI (Foundations & Trends in Machine Learning, 2009). The ICML 2009 Workshop on Learning Feature Hierarchies webpage has a list of references. The LISA public…