很有意思的题目. 题目背景 加特林轮盘赌是一个养生游戏. 题目描述 与俄罗斯轮盘赌等手枪的赌博不同的是,加特林轮盘赌的赌具是加特林. 加特林轮盘赌的规则很简单:在加特林的部分弹夹中填充子弹.游戏的参加者坐在一个圆桌上,轮流把加特林对着自己的头,扣动扳机一秒钟.中枪的自动退出,坚持到最后的就是胜利者. 我们使用的是2019年最新技术的加特林,他的特点是无需预热.子弹无限,每一个人,在每一回合,中枪的概率是完全相同的 \(P_0\). 每局游戏共有 \(n\) 只长脖子鹿,从1长脖子鹿开始,按照编号…
题面传送门 期望真 nm 有意思,所以蒟蒻又来颓期望辣 先特判掉 \(P_0=0\) 的情况,下面假设 \(P_0\ne 0\). 首先注意到我们每次将加特林对准一个人,如果这个人被毙掉了,那么相当于进入了 \(n-1\) 个人的状态,否则等价于每个人都向前移动了一个位置,原来第 \(k\) 个位置上的人挪到了第 \(k-1\) 个位置上,故我们考虑设 \(dp_{i,j}\) 表示在有 \(i\) 个人的状态下,第 \(j\) 个人成为唯一的幸存者的概率.考虑转移,这里不妨假设 \(j>2\)…
BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和. 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小. 分析: 题可以转化为求每条边被通过次数的期望.每条边的期望等于两个端点被通过次数的期望乘上通过这条…
洛谷题目传送门 球啊球 @xzz_233 qaq 高斯消元模板题,关键在于将已知条件转化为方程组. 可以发现题目要求的未知量有\(n\)个,题目却给了我们\(n+1\)个点的坐标,这其中必有玄机. 由高中数学知识可以知道,三点定圆(二维),四点定球(三维)······以此类推,应该是\(n+1\)个点才能确定一个\(n\)维空间下的球. 那么隐藏的另一个关键未知量在哪里呢? 想想圆的标准方程\((x-x_0)^2+(y-y_0)^2=r^2\),除了圆心坐标,半径不也对这个圆起到决定性作用么?…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2262 Where is the canteen Time Limit: 10000/5000 MS (Java/Others)Memory Limit: 65536/32768 K (Java/Others) 问题描述 After a long drastic struggle with himself, LL decide to go for some snack at last. But wh…
题目链接 BZOJ4418 题解 题意:从一个序列上某一点开始沿一个方向走,走到头返回,每次走的步长各有概率,问走到一点的期望步数,或者无解 我们先将序列倍长形成循环序列,\(n = (N - 1) \times 2\) 按期望\(dp\)的套路,我们设\(f[i]\)为从\(i\)点出发到达终点的期望步数[一定要这么做,不然转移方程很难处理],显然终点\(f[Y] = f[(n - Y) \mod n] = 0\) 剩余的点 \[f[i] = \sum\limits_{j = 1}^{M} p…
题目大意:有n个点,m条有向边,每条边上有一个小写字母. 有一个人从1号点开始在这个图上随机游走,游走过程中他会按顺序记录下走过的边上的字符. 如果在某个时刻,他记录下的字符串中,存在一个子序列和S2相同,或者存在一个子串和S1相同,那么他就会当场去世. 他想知道他会不会当场去世,如果会,他想问你当场去世的时间的期望. 数据范围:n≤20,|S1|≤10,|S2|≤50 我们考虑列一个dp方程出来 设f[i][j][k]表示这人从1号点出发,当前走到i号点,且子串覆盖了S1的前j位,覆盖了S2的…
题目传送门 题目大意:10*10的地图,不过可以直接看成1*100的,从1出发,要到达100,每次走的步数用一个大小为6的骰子决定.地图上有很多个通道 A可以直接到B,不过A和B大小不确定   而且 如果99扔到100 那么只有1能走 扔其他的都要再扔一次      问从1走到100的扔骰子个数的期望 一篇讲的很好的题解 个人觉得,这道题期望没有可以加减的性质,(n不一定是从n-1过来的),所以不能采用这道题通过累加的递推.而每种状态如果写成式子,会发现$dp[100]$是已知的,而其他所有值都…
正题 题目链接:https://www.luogu.com.cn/problem/P4457 题目大意 开始一个人最大生命值为\(n\),剩余\(hp\)点生命,然后每个时刻如果生命值没有满那么有\(\frac{1}{m+1}\)的概率回复一点生命,然后敌人攻击\(k\)次,每次有\(\frac{1}{m+1}\)概率造成一点伤害. 求期望多少次后生命值降到\(0\)或以下. \(1\leq T\leq 100,1\leq n\leq 1500,1\leq m,k\leq 10^9\) 解题思路…
地下迷宫 Time Limit:1000MS  Memory Limit:32768K Description: 由于山体滑坡,DK被困在了地下蜘蛛王国迷宫.为了抢在DH之前来到TFT,DK必须尽快走出此迷宫.此迷宫仅有一个出口,而由于大BOSS的力量减弱影响到了DK,使DK的记忆力严重下降,他甚至无法记得他上一步做了什么.所以他只能每次等概率随机的选取一个方向走.当然他不会选取周围有障碍的地方走.如DK周围只有两处空地,则每个都有1/2的概率.现在要求他平均要走多少步可以走出此迷宫. Inpu…