Codeforces 题目传送门 & 洛谷题目传送门 刚好看到 wjz 在做这题,心想这题之前好像省选前做过,当时觉得是道挺不错的题,为啥没写题解呢?于是就过来补了,由此可见我真是个大鸽子(( 跑题了跑题了-- 这里提供两种解法: Algorithm 1. 注意到"恰好"二字有点蓝瘦,因此套路地想到二项式反演,也就说我们钦定 \(k\) 条边必须与原树中的边重合,其余边可以随便连的方案数,我们假设这些与原树中的边重合的边构成的集合为 \(E'\),那么 \(E'\) 中显然包含…
题意 给你 \(n\) 个点的无向完全图,指定一棵树 \(S\),问有多少棵生成树和这棵树的公共边数量为 \(k\in[0,n-1]\) \(n\leq 100\) 分析 考虑矩阵树定理,把对应的树边的边权设置成 \(x\) 然后构造基尔霍夫矩阵, 结果记为 \(val\) ,有 \[val=\sum_\limits{i=0}^{n-1}x^ians_i\] 其中 \(ans_i\) 表示和 \(S\) 的公共边数量为 \(i\) 的生成树的个数. 发现这是一个关于 \(x\) 的多项式,我们要…
题目链接 正解:矩阵树定理+拉格朗日插值. 一下午就搞了这一道题,看鬼畜英文题解看了好久.. 首先这题出题人给了两种做法,感觉容斥+$prufer$序列+$dp$的做法细节有点多所以没看,然而这个做法似乎更难想.. 我们先构造一个函数$f(x)$,表示用一个完全图和$x-1$棵原树的边,构成的生成树的方案数. 也就是说,原树的每条边复制成$x$条,不在原树的边都变成一条边,求这个图的生成树的方案数. 然后我们可以发现,这个方案数实际上就等于$\sum_{i=0}^{n-1}x^{i}*ans_{…
题面传送门 一道推式子题. 首先列出柿子,\(ans=\sum\limits_{T_2}|T_1\cap T_2|·2^{T_1\cap T_2}\) 这个东西没法直接处理,不过注意到有一个柿子 \(f(S)=\sum\limits_{T\subseteq S}\sum\limits_{T'\subseteq T}(-1)^{T-T'}f(T')\),证明可考虑计算每个 \(T'\) 的贡献,由于 \(T'\subseteq T\subseteq S\),\(T\) 必然是 \(T'\) 与 \…
sequence 考虑长度<=x的方案数F(x),然后(F(x)-F(x-1))*x贡献到答案里 n平方的做法可以直接DP, 感觉有式子可言, 就推出式子:类似coat,每个长度为i的计算i次. 再容斥下: F是方案数,还是求: 枚举分成的段数,枚举多少个超过i进行容斥: 突破口:有个n-i*k-1,意味着i*k<=n,这样的i和k暴力枚举一共nlogn复杂度! 提出来,考虑干掉j 强行推式子: 处理: (怎么看怎么也看不出什么道理的样子) 来找组合意义吧: 有n-ik个球,我们先从中选出j个…
题目链接 CF917D:https://codeforces.com/problemset/problem/917/D TopCoder13369:https://community.topcoder.com/stat?c=problem_statement&pm=13369 题解 首先分析 CF917D. 我们考虑能否将树上的边的贡献特殊表现出来. 记原树为 \(T\),我们构造一幅 \(n\) 个结点的无向完全图,并设置一个值 \(x\),对于无向边 \((u, v)\),其权值 \(w_{…
题面传送门 一道代码让你觉得它是道给初学者做的题,然鹅我竟没想到? 首先考虑做一步转化,我们考虑将整棵树按深度奇偶性转化为一张二分图,即将深度为奇数的点视作二分图的左部,深度为偶数的点视作二分图的右部,这样我们肯定只能在左右部点之间连边,这大概算得上一个小套路吧,不过这还是萌新第一次见到这个套路呢,大佬不喜勿喷( 接下来考虑怎么求方案数,显然 \(1\) 只能放在左部点,我们还需从另外 \(n-1\) 个点中选出 \(k-1\) 个扔给左部,方案数为 \(\dbinom{n-1}{k-1}\),…
题意:给定N点,M边,求添加最少的边使之变为连通图的方案数. 思路:注意题目给出的M边可能带环,即最后生成的不一定是一棵树.但是影响不大.根据矩阵树定理,我们知道生成树的数量=N^(N-2),即点数^(连通数-2). 此题把已经连通的看成一个整体,就可以得到数量为N^(cnt-2),然后考虑连通块内部的点,因为内部贡献的时候每个点都有相同的机会,所以乘内部点的个数. 注意只有一个连通块时(已经连通的情况)不乘法个数. (只会套公式,证明我不知道啊... #include<bits/stdc++.…
传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看过推到完全图的生成树个数后这道题也不难做 构建出基尔霍夫矩阵,找一个主子式,所有行加起来放一行上,用这一行消消消就发现最后对角线上有$n-1$个$m$和$m-1$个$n$和$1$个$1$ 然后要用快速乘...蒟蒻第一次用快速乘... #include <iostream> using namesp…
题目描述 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病毒的产生规律是在一个N轮状基中删去若干条边,使得各原子之间有唯一的信息通道,例如共有16个不同的3轮状病毒,如下图所示 现给定n(N<=100),编程计算有多少个不同的n轮状病毒 输入 第一行有1个正整数n 输出 计算出的不同的n轮状病毒数输出 样例输入 3 样例输出 16 题解 矩阵树定理+高精度…