一.概述 决策树(decision tree)的一个重要任务是为了数据中所蕴含的知识信息,因此决策树可以使用不熟悉的数据集合,并从中提取出一系列规则,在这些机器根据数据创建规则时,就是机器学习的过程. 二.决策树的构造 决策树: 优点:计算复杂度不高, 输出结果易于理解, 对中间值的缺失不敏感, 可以处理不相关特征数据. 缺点: 可能会产生过度匹配问题. 适用数据类型:数值型和标称型 在构造决策树时, 我们需要解决的第一个问题就是, 当前数据集上哪个特征在划分数据分类时起决定性作用. 为了找到决…