当你运行一个学习算法时,如果这个算法的表现不理想,那么多半是出现两种情况:要么是偏差比较大,要么是方差比较大.换句话说,出现的情况要么是欠拟合,要么是过拟合问题.那么这两种情况,哪个和偏差有关,哪个和方差有关,或者是不是和两个都有关?搞清楚这一点非常重要,因为能判断出现的情况是这两种情况中的哪一种.其实是一个很有效的指示器,指引着可以改进算法的最有效的方法和途径,高偏差和高方差的问题基本上来说是欠拟合和过拟合的问题. 我们通常会通过将训练集和交叉验证集的代价函数误差与多项式的次数绘制在同一张图表…
我们已经讨论了模型选择问题,偏差和方差的问题.那么这些诊断法则怎样帮助我们判断,哪些方法可能有助于改进学习算法的效果,而哪些可能是徒劳的呢? 让我们再次回到最开始的例子,在那里寻找答案,这就是我们之前的例子.回顾 1.1中提出的六种可选的下一步,让我们来看一看我们在什么情况下应该怎样选择: 1. 获得更多的训练实例——解决高方差 2. 尝试减少特征的数量——解决高方差 3. 尝试获得更多的特征——解决高偏差 4. 尝试增加多项式特征——解决高偏差 5. 尝试减少正则化程度λ——解决高偏差 6.…
主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常大时,括号括起来的部分就接近于0,所以就变成了: 非常有意思的是,在最小化 1/2*∑θj^2的时候,最小间距也达到最大.原因如下: 所以: 即:如果我们要最小化1/2*∑θj^2,就要使得||θ||尽量小,而当||θ||最小时,又因为,所以p(i)最大,即间距最大. 注意:C可以看成是正则项系数λ…
在我们在训练模型的过程中,一般会使用一些正则化方法来防止过拟合.但是我们可能会正则化的程度太高或太小了,即我们在选择λ 的值时也需要思考与刚才选择多项式模型次数类似的问题. 我们选择一系列的想要测试的…
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.5 SVM参数细节 标记点选取 标记点(landmark)如图所示为\(l^{(1)},l^{(2)},l^{(3)}\),设核函数为 高斯函数 ,其中设预测函数y=1 if \(\theta_0+\theta_{1}f_1+\theta_{2}f_2+\theta_{3}f_3\ge0\) 在实际中需要用 很多标记点 ,那么如何选取 标记点(lan…
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.2 大间距的直观理解- Large Margin Intuition 人们有时将支持向量机看作是大间距分类器.在这一部分,我将介绍其中的含义,这有助于我们直观理解 SVM 模型的假设是什么样的.以下图片展示的是SVM的代价函数: 最小化SVM代价函数的必要条件 如果你有一个正样本,y=1,则只有在z>=1时代价函数\(cost_1(z)\)才等于0.…
11. 机器学习系统的设计 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 11.3 偏斜类的误差度量 Error Metrics for Skewed Classes 偏斜类 Skewed Classes 类偏斜情况表现为训练集中有非常多的同一种类的实例,只有很少或没有其他类的实例 示例 例如我们希望用算法来预测癌症是否是恶性的,在我们的训练集中,只有0.5%的实例是恶性肿瘤.假设我们编写一个非学习而来的算法,在所有情…
一.逻辑回归问题(分类问题) 生活中存在着许多分类问题,如判断邮件是否为垃圾邮件:判断肿瘤是恶性还是良性等.机器学习中逻辑回归便是解决分类问题的一种方法.二分类:通常表示为yϵ{0,1},0:"Negative Class",1:"Possitive Class". 逻辑回归的预测函数表达式hθ(x)(hθ(x)>=0 && hθ(x)<=1): 其中g(z)被称为逻辑函数或者Sigmiod函数,其函数图形如下: 理解预测函数hθ(x)的…
一.初识机器学习 何为机器学习?A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.理解:通过实验E,完成某一项任务T,利用评价标准P对实验结果进行迭代优化! 机器学习主要包括监督学习…
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.3 大间距分类背后的数学原理- Mathematics Behind Large Margin classification 向量内积 假设有两个向量\(u=\begin{bmatrix}u_1\\u_2\\ \end{bmatrix}\),向量\(v=\begin{bmatrix}v_1\\v_2\\ \end{bmatrix}\),其中向量的内积…