OpenCV Template Matching Subpixel Accuracy】的更多相关文章

OpenCV has function matchTemplate to easily do the template matching. But its accuracy can only reach pixel level, to achieve subpixel accuracy, need to do some calculations. Here i use a method to make template matching reach subpixel. First use mat…
一直找不到opencv stereo matching的根据和原理出处,下面这个文章贴了个链接,有时间看看: Basically OpenCV provides 2 methods to calculate a dense disparity map: cvFindStereoCorrespondenceBM: Fast (can process several images per second), but if parameters not tuned then the results ar…
转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/44151213, 来自:shiter编写程序的艺术 基础知识 计算机视觉是一门研究使用计算机来模拟人的视觉系统的学科."一图胜千言",人类对于图像中的信息感知效率远超文字等其他媒介,人类获取的信息总量中更是有高达80%依靠视觉系统[1].相对于人类高效的图像信息提取能力,计算机在图像信息的理解上仍然效率低下.  计算机视觉作为一门交叉学科,综合了生物学,心理学,数学,计…
得到了杂乱无章的特征点后,要筛选出好的特征点,也就是good matches. BruteForceMatcher FlannBasedMatcher 两者的区别:http://yangshen998.iteye.com/blog/1311575 flann的含义:http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/features2d/feature_flann_matcher/feature_flann_matcher.ht…
简介         本文作者提出新的框架(MTTM),使用模板匹配来完成多个任务,从深度图的模板上找到目标物体,通过比较模板特征图与场景特征图来预测分割mask和模板与检测物体之间的位姿变换.作者提出的特征网络通过模板与剪裁特征的对比来计算分割mask,预测位姿.通过实验表明尽管只使用深度图,但是效果很好. 论文针对生活中见到的物体,但是数据集或者CAD模型并不能覆盖所有物体,这样就需要额外的训练时间和新物体的样本图像来重新训练.而基于CNN的局部或全局描述符使用合成渲染图像和少量的真实图像训…
The interpolate function is used to get intensity of a point which is not on exactly a pixel. The code is written in C++. Because it is template function, so they should be put in header file. // Interpolates pixel intensity with subpixel accuracy. /…
摄像机有6个外参数(3个旋转,3个平移),5个内参数(fx,fy,cx,cy,θ),摄像机的内参数在不同的视场,分辨率中是一样的,但是不同的视角下6个外参数是变化的,一个平面物体可以固定8个参数,(为了表明平面投影视场中的所有目标只需要4个点,无论在一个平面中我们检测到多少个角点,只有4个有用的角点,每个角点有X,Y两个坐标,一共有8个方程) 摄像头标定其实就是把三维坐标的点首先经过平移,旋转将世界坐标系变到摄像机坐标系,然后根据三角几何变换得到图像物理坐标系,最后根据像素和公制单位的比率得到图…
PS. 因为csdn博客文章长度有限制,本文有部分内容被截掉了.在OpenCV中文站点的wiki上有可读性更好.而且是完整的版本号,欢迎浏览. OpenCV Wiki :<OpenCV 编程简单介绍(矩阵/图像/视频的基本读写操作)> Introduction to programming with OpenCV OpenCV编程简单介绍 Gady Agam Department of Computer Science January 27, 2006 Illinois Institute o…
相机标定的目的:获取摄像机的内参和外参矩阵(同时也会得到每一幅标定图像的选择和平移矩阵),内参和外参系数可以对之后相机拍摄的图像就进行矫正,得到畸变相对很小的图像. 相机标定的输入:标定图像上所有内角点的图像坐标,标定板图像上所有内角点的空间三维坐标(一般情况下假定图像位于Z=0平面上). 相机标定的输出:摄像机的内参.外参系数. 标定流程 1. 准备标定图片 2. 对每一张标定图片,提取角点信息 3. 对每一张标定图片,进一步提取亚像素角点信息 4. 在棋盘标定图上绘制找到的内角点(非必须,仅…
部分 IVOpenCV 中的图像处理 OpenCV-Python 中文教程(搬运)目录 23 图像变换 23.1 傅里叶变换目标本小节我们将要学习: • 使用 OpenCV 对图像进行傅里叶变换 • 使用 Numpy 中 FFT(快速傅里叶变换)函数 • 傅里叶变换的一些用处 • 我们将要学习的函数有:cv2.dft(),cv2.idft() 等原理 傅里叶变换经常被用来分析不同滤波器的频率特性.我们可以使用 2D 离散傅里叶变换 (DFT) 分析图像的频域特性.实现 DFT 的一个快速算法被称…