Spark-Mllib(二)基本统计】的更多相关文章

参考学习链接:http://www.itnose.net/detail/6269425.html 机器学习相关算法,建议初学者去看看斯坦福的机器学习课程视频:http://open.163.com/special/opencourse/machinelearning.html(已经被翻译了) 所有文中示例见:http://spark.apache.org/docs/latest/mllib-statistics.html 统计工具(1)摘要统计我们通过统计中可用的colStats函数提供RDD…
简介 spark MLlib官网:http://spark.apache.org/docs/latest/ml-guide.html mllib是spark core之上的算法库,包含了丰富的机器学习的一系列算法.你可以通过简单的API来构建算法模型,然后利用模型来进行预测分析推荐之类的. 它包含了一些工具,如: 1)算法工具:分类.回归.聚类.协同等 2)特征化工具:特征提取.转换.降维.选择等 3)管道:用于构建.评估和调整机器学习管道的工具 4)持久性:保存和加载算法.模型.管道 5)实用…
一.基本统计量 统计向量的长度,最大值,最小值,非0个数,模1和模2,方差等 import org.apache.spark.mllib.linalg.{Vector,Vectors} import org.apache.spark.mllib.stat.{MultivariateStatisticalSummary, Statistics} val data=sc.parallelize(1 to 100,2) val obs=data.map(x=>Vectors.dense(x)) val…
一, jar依赖,jsc创建. package ML.BasicStatistics; import com.google.common.collect.Lists; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaDoubleRDD; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.Java…
本章导读 机器学习(machine learning, ML)是一门涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多领域的交叉学科.ML专注于研究计算机模拟或实现人类的学习行为,以获取新知识.新技能,并重组已学习的知识结构使之不断改善自身. MLlib是Spark提供的可扩展的机器学习库.MLlib已经集成了大量机器学习的算法,由于MLlib涉及的算法众多,笔者只对部分算法进行了分析,其余算法只是简单列出公式,读者如果想要对公式进行推理,需要自己寻找有关概率论.数理统计.数理分析等方面的专…
无论是ICF基于物品的协同过滤.UCF基于用户的协同过滤.基于内容的推荐,最基本的环节都是计算相似度.如果样本特征维度很高或者<user, item, score>的维度很大,都会导致无法直接计算.设想一下100w*100w的二维矩阵,计算相似度怎么算? 更多内容参考--我的大数据学习之路--xingoo 在spark中RowMatrix提供了一种并行计算相似度的思路,下面就来看看其中的奥妙吧! 相似度 相似度有很多种,每一种适合的场景都不太一样.比如: 欧氏距离,在几何中最简单的计算方法 夹…
决策树类模型 ml中的classification和regression主要基于以下几类: classification:决策树及其相关的集成算法,Logistics回归,多层感知模型: regression:决策树及其相关集成算法,线性回归. 主要的模型有两类:线性模型(GLM)和决策树: 其中决策树的算法都调用了org.apache.spark.ml.tree.impl.RandomForest,没有和mllib中的代码复用,但是代码逻辑几乎一样. MLlib的决策树训练算法和传统的算法不同…
一.相关性分析 1.简介 计算两个系列数据之间的相关性是统计中的常见操作.在spark.ml中提供了很多算法用来计算两两的相关性.目前支持的相关性算法是Pearson和Spearman.Correlation使用指定的方法计算输入数据集的相关矩阵.输出是一个DataFrame,其中包含向量列的相关矩阵. 2.代码实现 package ml import org.apache.log4j.{Level, Logger} import org.apache.spark.ml.linalg.{Matr…
给定一个数据集,数据分析师一般会先观察一下数据集的基本情况,称之为汇总统计或者概要性统计.一般的概要性统计用于概括一系列观测值,包括位置或集中趋势(比如算术平均值.中位数.众数和四分位均值),展型(比如四分位间距.绝对偏差和绝对距离偏差.各阶矩等),统计离差,分布的形状,依赖性等.除此之外,spark.mllib库也提供了一些其他的基本的统计分析工具,包括相关性.分层抽样.假设检验,随机数生成等.在本章,我们将从以下几个方面进行介绍: 概括统计数据 Summary Statistics 相关性…
Spark MLlib提供了一些基本的统计学的算法,下面主要说明一下: 1.Summary statistics 对于RDD[Vector]类型,Spark MLlib提供了colStats的统计方法,该方法返回一个MultivariateStatisticalSummary的实例.他封装了列的最大值,最小值,均值.方差.总数.如下所示: val conf = new SparkConf().setAppName("Simple Application").setMaster(&quo…