(1)定义VC Dimension: dichotomies数量的上限是成长函数,成长函数的上限是边界函数: 所以VC Bound可以改写成: 下面我们定义VC Dimension: 对于某个备选函数集H,VC Dimension就是它所能shatter的最大数据个数N.VC Dimension = minimum break point - 1.所以在VC Bound中,(2N)^(k-1)可以替换为(2N)^(VC Dimension).VC Dimension与学习算法A,输入分布P,目标…
注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 前几节课着重介绍了机器能够学习的条件并做了详细的推导和解释.机器能够学习必须满足两个条件: 当假设空间\(\mathcal{H}\)的Size M是有限的时候,则\(N\)足够大的时候,对于假设空间中任意一个假设\(g\),都有\(E_{out}\approx E_{in}\) . 利用算法A从假设空间\(\mathcal{H}\)中,挑选一个\(g\),使\(E_{in}(g)\ap…
首先回顾上节课末尾引出来的VC Bound概念,对于机器学习来说,VC dimension理论到底有啥用. 三点: 1. 如果有Break Point证明是一个好的假设集合 2. 如果N足够大,那么Ein跟Eout的表现会比较接近 3. 如果算法A选的g足够好(Ein很小),则可能从数据中学到了东西 ================================================== 现在正式引出VC Dimension的概念:啥叫VC Dimension: VC Dimensi…
vc demension定义: breakPoint - 1 N > vc dimension, 任意的N个,就不能任意划分 N <= vc dimension,存在N个,可以任意划分 只要vc dimension是finite,那么H就比较好. Perceptron Learning Algo 多维度也行么?vc dimension是多少么?d维的, Dvc = d + 1 要证明! Dvc >= d+1, 存在d+1个点,可以被shatter. 原点,加上每个分量为1, 加上常数项,…
前面一节我们通过引入增长函数的上限的上限,一个多项式,来把Ein 和 Eout 的差Bound住,这一节引入VC Bound进一步说明这个问题. 前边我们得到,如果一个hypethesis集是有break point的,那么最终mh会被一个多项式bound住,如果break point 为k的话,那么这个多项式为N^(k - 1). Bound的不等式这里系统的列一下就是: 也就是说,机器可以学习的即可条件: 要有好的假设集,也就是需要存在break point 训练数据集要足够的大 要有一点儿…
Error | 误差 Bias | 偏差 – 衡量准确性 Variance | 方差 – 衡量稳定性 首先我们通常在实际操作中会直接用错误率或者与之对应的准确率来衡量一个模型的好坏,但是更加准确的做法是误差衡量时综合考虑偏差和方差的共同作用. 所谓偏差Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度.Variance反映的是模型每一次输出结果与模型输出期望值之间的误差,即模型的稳定性. 举个例子,对于一个二分类问题,比如测试图片是不是猫,是猫的话就是1,不是猫就是2. 现…
本章的思路在于揭示VC Dimension的意义,简单来说就是假设的自由度,或者假设包含的feature vector的个数(一般情况下),同时进一步说明了Dvc和,Eout,Ein以及Model Complexity Penalty的关系. 一回顾 由函数B(N,k)的定义,可以得到比较松的不等式mh(N)小于等于N^(k-1)(取第一项). 这样就可以把不等式转化为仅仅只和VC Dimension和N相关了,从而得出如下结论: 1 mh(N)有break point k,那么其就是多项式级别…
可以把growth function m_H(N)的upper bound用N^(k-1)来限制, for N large, k>=3 Thus, 定义: VC Dimension: maximum non-break point 如果break point = k, then VC dimension = k-1 在VC Dimension上,这个Hset可以shatter某N个点,不一定是所有的N个点,但是如果N超过了VC dimension,则出现了Hset不能shatter掉的情况。 d…
当N大于等于2,k大于等于3时, 易得:mH(N)被Nk-1给bound住. VC维:最小断点值-1/H能shatter的最大k值. 这里的k指的是存在k个输入能被H给shatter,不是任意k个输入都能被H给shatter. 如:2维感知机能shatter平面上呈三角形排列的3个样本点,却shatter不了平面上呈直线排列的3个样本点, 因为当另外2个点标签值一致时,中间那个点无法取与它们相反的标签值. 若无断点,则该H下,VC维为无穷. 所以,存在断点--->有限VC维. d维感知器算法下,…
当N大于等于2,k大于等于3时, 易得:mH(N)被Nk-1给bound住. VC维:最小断点值-1/H能shatter的最大k值. 这里的k指的是存在k个输入能被H给shatter,不是任意k个输入都能被H给shatter. 如:2维感知机能shatter平面上呈三角形排列的3个样本点,却shatter不了平面上呈直线排列的3个样本点, 因为当另外2个点标签值一致时,中间那个点无法取与它们相反的标签值. 若无断点,则该H下,VC维为无穷. 所以,存在断点------>有限VC维. d维感知器算…