依据Spark 1.4版 在哪里会用到它 ExternalSorter是Spark的sort形式的shuffle实现的关键.SortShuffleWriter使用它,把RDD分区中的数据写入文件. override def write(records: Iterator[Product2[K, V]]): Unit = { if (dep.mapSideCombine) {//根据是否需要mqp-side combine创建不同的sorter require(dep.aggregator.isD…
分布式系统里的Shuffle 阶段往往是非常复杂的,而且分支条件也多,我只能按着我关注的线去描述.肯定会有不少谬误之处,我会根据自己理解的深入,不断更新这篇文章. 前言 借用和董神的一段对话说下背景: shuffle共有三种,别人讨论的是hash shuffle,这是最原始的实现,曾经有两个版本,第一版是每个map产生r个文件,一共产生mr个文件,由于产生的中间文件太大影响扩展性,社区提出了第二个优化版本,让一个core上map共用文件,减少文件数目,这样共产生corer个文件,好多了,但中间文…
在Spark 1.2.0中,Spark Core的一个重要的升级就是将默认的Hash Based Shuffle换成了Sort Based Shuffle,即spark.shuffle.manager 从hash换成了sort,对应的实现类分别是org.apache.spark.shuffle.hash.HashShuffleManager和org.apache.spark.shuffle.sort.SortShuffleManager. 这个方式的选择是在org.apache.spark.Sp…
从Spark-1.2.0开始,Spark的Shuffle由Hash Based Shuffle升级成了Sort Based Shuffle.即Spark.shuffle.manager从Hash换成了Sort.不同形式的Shuffle逻辑主要是ShuffleManager的实现类不同. 在org.apache.spark.SparkEnv类中: // Let the user specify short names for shuffle managers val shortShuffleMgr…
-classpath "C:\Program Files\Java\jdk1.8.0_131\jre\lib\charsets.jar;C:\Program Files\Java\jdk1.8.0_131\jre\lib\deploy.jar;C:\Program Files\Java\jdk1.8.0_131\jre\lib\ext\access-bridge-64.jar;C:\Program Files\Java\jdk1.8.0_131\jre\lib\ext\cldrdata.jar;…
今天,在运行Spark SQL代码的时候,遇到了以下错误: Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 3 in stage 50.0 failed 4 times, most recent failure: Lost task 3.3 in stage 50.0 (TID 9204, bjhw-feed-shunyi2513.bjhw.baidu.com, executor…
欢迎转载,转载请注明出处. 概要 Spark 1.1中对spark core的一个重大改进就是引入了sort-based shuffle处理机制,本文就该处理机制的实现进行初步的分析. Sort-based Shuffle之初体验 通过一个小的实验来直观的感受一下sort-based shuffle算法会产生哪些中间文件,具体实验步骤如下所述. 步骤1: 修改conf/spark-default.conf, 加入如下内容 spark.shuffle.manager SORT 步骤2: 运行spa…
Apache Spark 2.2.0 中文文档 - 快速入门 | ApacheCN Geekhoo 关注 2017.09.20 13:55* 字数 2062 阅读 13评论 0喜欢 1 快速入门 使用 Spark Shell 进行交互式分析 基础 Dataset 上的更多操作 缓存 独立的应用 快速跳转 本教程提供了如何使用 Spark 的快速入门介绍.首先通过运行 Spark 交互式的 shell(在 Python 或 Scala 中)来介绍 API, 然后展示如何使用 Java , Scal…
Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色.理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行性能调优.本文旨在梳理出 Spark 内存管理的脉络,抛砖引玉,引出读者对这个话题的深入探讨.本文中阐述的原理基于 Spark 2.1 版本,阅读本文需要读者有一定的 Spark 和 Java 基础,了解 RDD.Shuffle.JVM 等相关概念. 在执行 Spark 的应用程序时,Spark 集群会启动 Driver…
Spark 编程指南 概述 Spark 依赖 初始化 Spark 使用 Shell 弹性分布式数据集 (RDDs) 并行集合 外部 Datasets(数据集) RDD 操作 基础 传递 Functions(函数)给 Spark 理解闭包 示例 Local(本地)vs. cluster(集群)模式 打印 RDD 的 elements 与 Key-Value Pairs 一起使用 Transformations(转换) Actions(动作) Shuffle 操作 Background(幕后) 性能…