【模式识别】Boosting】的更多相关文章

声明:本文用到的代码均来自于PRTools(http://www.prtools.org)模式识别工具箱,并以matlab软件进行实验. (1)在介绍Bagging和Boosting算法之前,首先要简单了解什么是集成学习? 集成学习(Ensemble Learning)是目前模式识别与机器学习中常用的一种学习算法,是使用一系列的学习器(分类器)通过某种规则(投票法.加权投票等)将各分类器的学习结果进行融合,达到比单学习器识别效果更好地目的. 可以打一个简单的比喻,如果我们将"学习器"看…
Boosting简单介绍 分类中通常使用将多个弱分类器组合成强分类器进行分类的方法,统称为集成分类方法(Ensemble Method).比較简单的如在Boosting之前出现Bagging的方法,首先从从总体样本集合中抽样採取不同的训练集训练弱分类器,然后使用多个弱分类器进行voting,终于的结果是分类器投票的优胜结果.这样的简单的voting策略通常难以有非常好的效果.直到后来的Boosting方法问世,组合弱分类器的威力才被发挥出来.Boosting意为加强.提升,也就是说将弱分类器提升…
http://www.csdn.net/article/2015-03-24/2824301 [编者按]本文来自CMU的博士,MIT的博士后,vision.ai的联合创始人Tomasz Malisiewicz的个人博客文章,阅读本文,你可以更好的理解计算机视觉是怎么一回事,同时对机器学习是如何随着时间缓慢发展的也有个直观的认识. 以下为正文: 本文我们来关注下三个非常相关的概念(深度学习.机器学习和模式识别),以及他们与2015年最热门的科技主题(机器人和人工智能)的联系. 图1 人工智能并非将…
Topic Name Reference code Image Segmentation Segmentation by Minimum Code Length AY Yang, J. Wright, S. Shankar Sastry, Y. Ma , Unsupervised Segmentation of Natural Images via Lossy Data Compression, CVIU, 2007 code Image Segmentation Normalized Cut…
计算机视觉与模式识别代码合集第二版three     Topic Name Reference code Optical Flow Horn and Schunck's Optical Flow   code Optical Flow Black and Anandan's Optical Flow   code Pose Estimation Training Deformable Models for Localization Ramanan, D. "Learning to Parse I…
1.boosting Boosting方法是一种用来提高弱分类算法准确度的方法,这种方法通过构造一个预测函数系列,然后以一定的方式将他们组合成一个预测函数.他是一种框架算法,主要是通过对样本集的操作获得样本子集,然后用弱分类算法在样本子集上训练生成一系列的基分类器. 在boosting算法产生之前,还出现过两种比较重要的将多个分类器整合为一个分类器的方法,即boostrapping方法和bagging方法. 1.1 bootstrapping方法的主要过程 i)重复地从一个样本集合D中采样n个样…
使用机器学习方法解决问题时,有较多模型可供选择. 一般的思路是先根据数据的特点,快速尝试某种模型,选定某种模型后, 再进行模型参数的选择(当然时间允许的话,可以对模型和参数进行双向选择) 因为不同的模型具有不同的特点, 所以有时也会将多个模型进行组合,以发挥"三个臭皮匠顶一个诸葛亮的作用", 这样的思路, 反应在模型中,主要有两种思路:Bagging和Boosting 1. Bagging Bagging 可以看成是一种圆桌会议, 或是投票选举的形式,其中的思想是:"群众的眼…
牛人主页(主页有很多论文代码) Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at Microsoft Research New England Vittorio Ferrari at Univ.of Edinburgh Kristen Grauman at UT Austin Devi Parikh at  TTI-Chicago (Marr Prize at ICCV2011…
转:http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, jackknife, bagging, boosting, random forest 都有介绍,以下是搜索得到的原文,没找到博客作者的地址, 在这里致谢作者的研究. 一并列出一些找到的介绍boosting算法的资源: (1)视频讲义,介绍boosting算法,主要介绍AdaBoosing    htt…
Atitit 图像处理--图像分类 模式识别 肤色检测识别原理 与attilax的实践总结 1.1. 五中滤镜的分别效果..1 1.2. 基于肤色的图片分类1 1.3. 性能提升2 1.4. --code2 1.1. 五中滤镜的分别效果.. /AtiPlatf_cms/src/com/attilax/clr/skinfltAll.java 1.2. 基于肤色的图片分类 /AtiPlatf_cms/src/com/attilax/clr/moveBySkinLow.java 生成所有图片的肤色百分…