BZOJ 4305: 数列的GCD( 数论 )】的更多相关文章

对于d, 记{ai}中是d的倍数的数的个数为c, 那么有: 直接计算即可,复杂度O(NlogN+MlogM) --------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm>   using namespace std;   typedef long long ll;   co…
LINK:数列的GCD 题意: 给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N). 现在问题是,对于1到M的每个整数d,有多少个不同的数列b[1], b[2], ..., b[N],满足: (1)1<=b[i]<=M(1<=i<=N): (2)gcd(b[1], b[2], ..., b[N])=d: (3)恰好有K个位置i使得\(a_i\neq b_i\)(1<=i<=N) 注:gcd(x1,x2,...,xn)为x1…
4305: 数列的GCD Description 给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N).  现在问题是,对于1到M的每个整数d,有多少个不同的数列b[1], b[2], ..., b[N],满足:  (1)1<=b[i]<=M(1<=i<=N):  (2)gcd(b[1], b[2], ..., b[N])=d:  (3)恰好有K个位置i使得a[i]<>b[i](1<=i<=N)  注:gcd(x…
题目: 题解: http://hzwer.com/6142.html #include<cstdio> #include<algorithm> #define N 10000005 typedef long long ll; using namespace std; int T,n,m,cnt; bool mark[N]; int pri[N],mu[N]; ll f[N]; void getphi() { mu[]=; ;i<N;i++) { ; ;j<=cnt &a…
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对.q组询问 分析 我们要求的是 \[\sum_{p \in P} \sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=p]\](大写P表示质数集合) 根据\(kgcd(i,j)=gcd(ki,kj)\), \[原式=\sum_{p \in P} \sum_{i=1}^{\lfloo…
bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT hint对于样例(2,2),(2,4),(3,3),(4,2) 1<=N<=10^7 题解一(自己yy) phi[i]表示与x互质的数的个数 即gcd(x,y)=1 1<=y<x ∴对于x,y 若a为素数 则gcd(xa,…
首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 2 2 5 1 5 1 1 5 1 5 2 Sample Output 14 3 HI…
bzoj 4303 数列 二维 \(KD-Tree\) 模板题. \(KD-Tree\) 虽然在更新和查询的方式上类似于线段树,但其本身定义是类似于用 \(splay/fhq\ treap\) 维护区间的二叉搜索树,没有加点删点,建树时将它建成平衡的就好了. 这使得一个 \(node\) 的左子树管辖 \([l,mid-1]\) ,右子树管辖 \([mid+1,r]\) , \(mid\) 处的信息存在自己处,不要写混. 对于 \(k\) 维的 \(KD-Tree\) ,它每次更新/查询的时间复…
Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变一个数的值(注意不是真的改变),使得这个区间的gcd是小明所猜的数也算小明猜对.另一种操作就是真的修改某一点的值. 解题思路 这里我们使用线段树,维护区间内的gcd,判断的时候需要判断这个区间的左右子区间的gcd是不是小明猜的数的倍数或者就是小明猜的数,如果是,那么小明猜对了.否则就需要进入这个区间…
[BZOJ 2989]数列(二进制分组+主席树) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[y]|. 2种操作(k都是正整数): 1.Modify x k:将第x个数的值修改为k. 2.Query x k:询问有几个i满足graze(x,i)<=k.因为可持久化数据结构的流行,询问仅要考虑当前数列,还要考虑任意历史版本,即统计任意位置上出现过的任意数值与当前的a[x]的graze值<=k…