1.先在hive-site.xml中设置小文件的标准. <property> <name>hive.merge.smallfiles.avgsize</name> <value>536870912</value> <description>When the average output file size of a job is less than this number, Hive will start an additional…
目录 1 - 为什么要合并小文件 2 - 合并本地的小文件,上传到 HDFS 3 - 合并 HDFS 的小文件,下载到本地 4 - 通过 Java API 实现文件合并和上传 版权声明 1 - 为什么要合并小文件 HDFS 擅长存储大文件: 我们知道,HDFS 中,每个文件都有各自的元数据信息,如果 HDFS 中有大量的小文件,就会导致元数据爆炸,集群管理的元数据的内存压力会非常大. 所以在项目中,把小文件合并成大文件,是一种很有用也很常见的优化方法. 2 - 合并本地的小文件,上传到 HDFS…
文件数目过多,会给HDFS带来压力,并且会影响处理效率,可以通过合并Map和Reduce的结果文件来消除这样的影响: set hive.merge.mapfiles = true ##在 map only 的任务结束时合并小文件 set hive.merge.mapredfiles = false ## true 时在 MapReduce 的任务结束时合并小文件 set hive.merge.size.per.task = 256*1000*1000 ##合并文件的大小 set mapred.m…
磁盘: heads/sectors/cylinders,分别就是磁头/扇区/柱面,每个扇区512byte(现在新的硬盘每个扇区有4K) 文件系统: 文件系统不是一个扇区一个扇区的来读数据,太慢了,所以有了block(块)的概念,它是一个块一个块的读取的,block才是文件存取的最小单位. 文件系统中1个块是由连续的8个扇区组成. HDFS: 默认文件大小64M(或者是128M) hive小文件问题解决 问题描述 HDFS的文件元信息,包括位置.大小.分块信息等,都是保存在NameNode的内存中…
一.Hadoop 框架计算特性 1.数据量大不是问题,数据倾斜是个问题 2.jobs 数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次 汇总,产生十几个 jobs,耗时很长.原因是 map reduce 作业初始化的时间是比较长的 3.sum,count,max,min 等 UDAF,不怕数据倾斜问题,hadoop 在 map 端的汇总合并优化,使 数据倾斜不成问题 4.count(distinct userid),在数据量大的情况下,效率较低,如果是多 count(di…
粘贴一下我在部门中的一次hive优化的分享. 简述 hive构建在hadoop基础上,利用分布式存储,通过mr引擎实现对大数据的计算.MR会频繁地读写磁盘而且MR任务的启动成本很高.对于hive优化显得尤为重要.而优化的核心就是更好地利用hadoop的分布式特性和hive的有点.本篇从IO.参数设置.案例实战来说明如何优化我们的hive.受限于个人能力,如有不足之处,还望指出,一起沟通讨论. 1.IO A.通过列裁剪,只读取需要的列[对select * 的做法应进行严格要求,甚至禁止] B. j…
一.调整hive作业中的map数 1.通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改): 2.举例: a)假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数b)假设input目录下有3个文…
一.调整hive作业中的map数 1.通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改): 2.举例: a)假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数b)假设input目录下有3个文…
1. Map输入合并小文件对应参数:set mapred.max.split.size=256000000;  #每个Map最大输入大小set mapred.min.split.size.per.node=100000000; #一个节点上split的至少的大小 set mapred.min.split.size.per.rack=100000000; #一个交换机下split的至少的大小set hive.input.format=org.apache.hadoop.hive.ql.io.Com…
最近发现离线任务对一个增量Hive表的查询越来越慢,这引起了我的注意,我在cmd窗口手动执行count操作查询发现,速度确实很慢,才不到五千万的数据,居然需要300s,这显然是有问题的,我推测可能是有小文件. 我去hdfs目录查看了一下该目录: 发现确实有很多小文件,有480个小文件,我觉得我找到了问题所在,那么合并一下小文件吧: insert into test select * from table distribute by floor (rand()*5); 这里使用distribute…