线性代数是数学的一个重要分支,它经常被施加到project问题,要了解学习和工作深入研究的深度,因此,对于线性代数的深刻理解是非常重要的.下面是我总结的距离DL book性代数中抽取出来的比較有意思的一些理解基础线代问题的还有一些很形象易懂的思路. 2.3 Identity and inverse matrices 在线性方程组的求解其中,Identity和inverse matrice有非常关键的数据,具体求解样例例如以下图所看到的: 在实际应用场景中,当中inverse matrice 不一…
动人的DL我们有六个月的时间,积累了一定的经验,实验,也DL有了一些自己的想法和理解.曾经想扩大和加深DL相关方面的一些知识. 然后看到了一个MIT按有关的对出版物DL图书http://www.iro.umontreal.ca/~bengioy/dlbook/,所以就有了读一下这本书然后做点笔记攒点知识量的念头.这一系列的博客将是笔记型的,有什么写的不好之处还望广大博友见谅,也欢迎各位同行能指点一二. 这是本书的第一章,下面是个人感觉蛮重要的一些点: logistic regression ca…
前言 实验内容:Exercise:Learning color features with Sparse Autoencoders.即:利用线性解码器,从100000张8*8的RGB图像块中提取颜色特征,这些特征会被用于下一节的练习 理论知识:线性解码器和http://www.cnblogs.com/tornadomeet/archive/2013/04/08/3007435.html 实验基础说明: 1.为什么要用线性解码器,而不用前面用过的栈式自编码器等?即:线性解码器的作用? 这一点,Ng…
线性解码器(Linear Decoder) 前面第一章提到稀疏自编码器(http://www.cnblogs.com/bzjia-blog/p/SparseAutoencoder.html)的三层网络结构,我们要满足最后一层的输出:a(3)≍a(1)(即输入值x)的近似重建.考虑到在最后一层的a(3)=f(z(3)),这里f一般用sigmoid函数或tanh函数等非线性函数,而将输出界定在一个范围内(比如sigmoid函数使结果在[0,1]中).这对于有些数据组,例如MNIST手写数字库中其输入…
为了获得良好的收敛,在进行梯度下降前,我们可以对数据进行预处理. 目标是使得数据大小在同一个数据数量级上,均值为零. 一般将数据放缩到(-1,1)区间, 我们可以对数据进行如下操作: 其中u1是数据的均值,s1为数据绝对值的最大值. 用处理后的数据进行梯度下降可以获得更好效果.…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.com/ty4z2008/Qix/blob/master/dl.md)共500条,[篇目二](https://github.com/ty4z2008/Qix/blob/master/dl2.md)开始更新------#####希望转载的朋友**一定要保留原文链接**,因为这个项目还在继续也在不定期更新.希望看到…
Learning Deep Learning with Keras Piotr Migdał - blog Projects Articles Publications Resume About Photos Learning Deep Learning with Keras 30 Apr 2017 • Piotr Migdał • [machine-learning] [deep-learning] [overview] I teach deep learning both for a liv…
Where can I start with Deep Learning? By Rotek Song, Deep Reinforcement Learning/Robotics/Computer Vision/iOS | 03/01/2017   If you are a newcomer to the Deep Learning area, the first question you may have is “Which paper should I start reading from?…
前言 理论知识:UFLDL教程.Deep learning:三十三(ICA模型).Deep learning:三十九(ICA模型练习) 实验环境:win7, matlab2015b,16G内存,2T机械硬盘 难点:本实验难点在于运行时间比较长,跑一次都快一天了,并且我还要验证各种代价函数的对错,所以跑了很多次. 实验内容:Exercise:Independent Component Analysis.从数据库Sampled 8x8 patches from the STL-10 dataset…