最近研究NLP颇感兴趣,但由于比较懒,所以只好找来网上别人的比较好的博客,备份一下,也方便自己以后方便查找(其实,一般是不会再回过头来看的,嘿嘿 -_-!!) 代码自己重新写了一遍,所以就不把原文代码贴过来了. 1. 前向算法(摘自http://www.cnblogs.com/kaituorensheng/archive/2012/12/01/2797230.html) 隐马模型的评估问题即,在已知一个观察序列O=O1O2...OT,和模型μ=(A,B,π}的条件下,观察序列O的概率,即P(O|…
本系列文章摘自 52nlp(我爱自然语言处理: http://www.52nlp.cn/),原文链接在 HMM 学习最佳范例,这是针对 国外网站上一个 HMM 教程 的翻译,作者功底很深,翻译得很精彩,且在原文的基础上还提供了若干程序实例,是初学者入门 HMM 的好材料.原文中存在若干笔误,这里结合 HMM 学习最佳范例 的作者和读者的建议,一并做了修改,供大家参考. 相关链接 HMM 自学教程(一)引言 HMM 自学教程(二)生成模型 HMM 自学教程(三)隐藏模式 HMM 自学教程(四)隐马…
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列(TODO) 在隐马尔科夫模型HMM(一)HMM模型中,我们讲到了HMM模型的基础知识和HMM的三个基本问题,本篇我们就关注于HMM第一个基本问题的解决方法,即已知模型和观测序列,求观测序列出现的概率. 1. 回顾HMM问题一:求观测序列的概率 首先我们回顾下HMM模型的问题一.这个…
条件随机场CRF(一)从随机场到线性链条件随机场 条件随机场CRF(二) 前向后向算法评估标记序列概率 条件随机场CRF(三) 模型学习与维特比算法解码 在条件随机场CRF(一)中我们总结了CRF的模型,主要是linear-CRF的模型原理.本文就继续讨论linear-CRF需要解决的三个问题:评估,学习和解码.这三个问题和HMM是非常类似的,本文关注于第一个问题:评估.第二个和第三个问题会在下一篇总结. 1. linear-CRF的三个基本问题 在隐马尔科夫模型HMM中,我们讲到了HMM的三个…
目录 基本要素 HMM三大问题 概率计算问题 前向算法 后向算法 前向-后向算法 基本要素 状态 \(N\)个 状态序列 \(S = s_1,s_2,...\) 观测序列 \(O=O_1,O_2,...\) \(\lambda(A,B,\pi)\) 状态转移概率 \(A = \{a_{ij}\}\) 发射概率 \(B = \{b_{ik}\}\) 初始概率分布 \(\pi = \{\pi_i\}\) 观测序列生成过程 初始状态 选择观测 状态转移 返回step2 HMM三大问题 概率计算问题(评…
HMM的模型  图1 如上图所示,白色那一行描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,蓝紫色那一行是各个状态生成可观测的随机序列 话说,上面也是个贝叶斯网络,而贝叶斯网络中有这么一种,如下图: 代表:c确定时a和b独立.(c为实心圆代表:c已经被确定) 这时,如果把z1看成a,x1看成b,z2看成c的话,则因为第一个图的z1是不可观测的(所以z1是空心圆),也就是没确定,则x1和z2就一定有联系. 进一步,如果把z2.x2合在一起看成c的话,则x1和z2.x2就一定有联系,则x1和x…
隐马尔可夫模型HMM与维特比Veterbi算法(一) 主要内容: 1.一个简单的例子 2.生成模式(Generating Patterns) 3.隐藏模式(Hidden Patterns) 4.隐马尔可夫模型(Hidden Markov Model) 一.一个简单的例子 考虑一个简单的例子,有人试图通过一片海藻推断天气——民间传说告诉我们‘湿透的’海藻意味着潮湿阴雨,而‘干燥的’海藻则意味着阳光灿烂.如果它处于一个中间状态(‘有湿气’),我们就无法确定天气如何.然而,天气的状态并没有受限于海藻的…
基本要素 状态 \(N\)个 状态序列 \(S = s_1,s_2,...\) 观测序列 \(O=O_1,O_2,...\) \(\lambda(A,B,\pi)\) 状态转移概率 \(A = \{a_{ij}\}\) 发射概率 \(B = \{b_{ik}\}\) 初始概率分布 \(\pi = \{\pi_i\}\) 观测序列生成过程 初始状态 选择观测 状态转移 返回step2 HMM三大问题 概率计算问题(评估问题) 给定观测序列 \(O=O_1O_2...O_T\),模型 \(\lamb…
基本要素 状态 \(N\)个 状态序列 \(S = s_1,s_2,...\) 观测序列 \(O=O_1,O_2,...\) \(\lambda(A,B,\pi)\) 状态转移概率 \(A = \{a_{ij}\}\) 发射概率 \(B = \{b_{ik}\}\) 初始概率分布 \(\pi = \{\pi_i\}\) 观测序列生成过程 初始状态 选择观测 状态转移 返回step2 HMM三大问题 概率计算问题(评估问题) 给定观测序列 \(O=O_1O_2...O_T\),模型 \(\lamb…