汉诺塔Java实现】的更多相关文章

public class Hanoi { public static void main(String[] args ) { Hanoi hanoi = new Hanoi(); hanoi.hanoi(8,'a','b','c'); } //圆盘个数,三根柱子,作为参数 public void hanoi(int n,char x,char y,char z){ if (n==1 ){ //只有一个圆盘直接移动从x到z move(x,n,z); }else { //多个圆盘,先将n-1个从x移…
正文之前,先说下做这题的心路历程(简直心累) 这是今天下午的第一道题 第一次看到题目标题——汉诺塔 内心OS:wc,汉诺塔诶,听名字就很难诶,没做过诶,肯定很难实现吧,不行,我得去看看讲解 然后就上b站,看了一遍汉诺塔递归的思路,然后又搜了博客,看了汉诺塔java实现的源码(此时一下午已经过去了……) 看完了之后 内心OS:现在肯定能通过了吧 然后就把汉诺塔的实现代码照着题目改了一下提交上去了,然后……TLE 想想也对啊,那么大数据一个个统计,肯定会超时 然后就在纸上写规律,写着写着,突然发现,…
目录 1 问题描述 2 解决方案  2.1 递归法 2.2 非递归法 1 问题描述 Simulate the movement of the Towers of Hanoi Puzzle; Bonus is possible for using animation. e.g. if n = 2 ; A→B ; A→C ; B→C; if n = 3; A→C ; A→B ; C→B ; A→C ; B→A ; B→C ; A→C; 翻译:模拟汉诺塔问题的移动规则:获得奖励的移动方法还是有可能的.…
Answer: //Li Cuiyun,October 14,2016. //用递归方法编程解决汉诺塔问题 package tutorial_3_5; import java.util.*; public class HanoiTower { public static void main(String[] args) { // TODO Auto-generated method stub @SuppressWarnings("resource") Scanner sc=new Sc…
//汉诺塔问题//HanYang 2016/10/15 import java.util.Scanner; //输出public class Hanuota { public static void Show(String a,String b){  System.out.print(" " + a + "->" + b + " " ); } //从a移到c    public static void Fun(int n, String a…
汉诺塔问题[又称河内塔]是印度的一个古老的传说. 据传开天辟地之神勃拉玛在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上面.就是这看似简单的问题,却困扰了人们千年以上. 后来,这个传说就演变为汉诺塔游戏,玩法如下: 1.有三根杆子A,B,C.A杆上有若干碟子   2.每次移动一块碟子,小的只能叠在大的上面  …
今天说下java语言中比较常见的一种方法,递归方法. 递归的定义 简单来说递归的方法就是"自己调用自己",通过递归方法往往可以将一个大问题简单化,最终压缩到一个易于处理的程度.对于编程来说,每次递归都会减少数据量: java中递归的模式 每个递归函数的开头一定是判断递归结束条件是否满足的语句(一般是if语句):函数体一定至少有一句是"自己调用自己"的.每个递归函数一定有一个控制递归可以终结的变量(通常是作为函数的参数而存在).每次自己调用自己时,此变量会变化(一般是…
问题描述   在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面.僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔.庙宇和众生也都将同归于尽.   扯远了,把这个问题简单描述下有A,B,C三根柱子,将A柱上N个从小到大…
ylbtech-Java-Runoob-高级教程-实例-方法:03. Java 实例 – 汉诺塔算法 1.返回顶部 1. Java 实例 - 汉诺塔算法  Java 实例 汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘. 后来,这个传说就演变为汉诺塔游戏,玩法如…
package 汉诺塔; //引入Scanner包,用于用户输入 import java.util.Scanner; public class 汉诺塔算法 { public static void main(String[] args) { //建立一个Scanner类的对象a        Scanner a=new Scanner(System.in);          System.out.print("请输入盘数:");          //用n接收用户输入的盘数    …
汉诺塔问题是源于印度一个古老传说的益智玩具.要求将圆盘从A柱移动到C柱规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘. 可以先通过3个盘子的hanoi游戏得出其算法步骤如下: if n=1 , 直接将圆盘移到c棒if n>1 , 将A棒上的n-1个圆盘移到B棒上将A棒上的1个圆盘移到C棒上将B棒上的n-1个圆盘移到C棒上 (图:3个盘子时第一步和第二步如上图所示) 用Java的实现代码如下 package cn.myseu.test.hanoi; public class Ha…
汉诺塔 有三根相邻的柱子,标号为A,B,C,A柱子上从下到上按金字塔状叠放着n个不同大小的圆盘,要把所有盘子一个一个移动到柱子B上,并且每次移动同一根柱子上都不能出现大盘子在小盘子上方. --如果朋友您想转载本文章请注明转载地址"http://www.cnblogs.com/XHJT/p/3878076.html "谢谢-- 问题: 1.如何移动: 2.n个盘子移动多少次(count)? 解决问题1: 为了将第n个盘子从A移动到C,就得先将第n个盘子上面的第n-1盘子移动到B上: 同样…
汉诺塔(一) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵 天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金 片:一次只移动一片,不管在哪根针上,小片必须在大片上面.僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消…
package com.ywx.count; import java.util.Scanner; /** * @author Vashon * date:20150410 * * 题目:汉诺塔算法(本道程序结合了<<C语言程序教程>>的分析思路,通过重构完成.) * * 递归分析(有兴趣的可以去研究非递归的):移动n个金片从a到c,必须先将n-1个金片从a经过c移动到b,移动n-1个问题相同,但规模变小. * 1.将n-1个金片从a经过c移动到b * 2.将第n个金片移动到c *…
一,使用计算机计算组合数 1,设计思想 (1)使用组合数公式利用n!来计算Cn^k=n!/k!(n-k)!用递推计算阶乘 (2)使用递推的方法用杨辉三角计算Cn+1^k=Cn^k-1+Cn^k 通过数组写出杨辉三角,对应的几排几列就对应这组合数的n和k (3)使用递归的方法用组合数递推公式计算 定义带参数的方法,将不同的参数传递给方法,然后计算出阶乘 2,程序流程图 3,程序源代码 package 计算组合数; import java.util.Scanner; public class Cac…
大家还记得某年春晚小品那个把大象放冰箱需要几步吗? 今天,我准备写的是汉诺塔,有三个魔法石柱,分别:诚实.勇敢.正直.其中有一个石柱上从大到小,从地向上依次排放着四个魔法圆环,需要将那四个魔法圆环分别按照大的上面放小的,不可以在小的上面放大的的:需要几步? import java.util.Scanner; public class ssr { ; public static void main(String[] args) { //汉诺塔 hanio(, "诚实", "勇敢…
汉诺塔 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 汉诺塔(又称河内塔)问题是印度的一个古老的传说. 开天辟地的神勃拉玛在一个庙里留下了三根金刚石的棒A.B和C,A上面套着n个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不倦地把它们一个个地从A棒搬到C棒上,规定可利用中间的一根B棒作为帮助,但每次只能搬一个,而且大的不能放在小的上面. 僧侣们搬得汗流满面,可惜当n很大时这辈子恐怕就很搬完了…
1 问题描述 Simulate the movement of the Towers of Hanoi Puzzle; Bonus is possible for using animation. e.g. if n = 2 ; A→B ; A→C ; B→C; if n = 3; A→C ; A→B ; C→B ; A→C ; B→A ; B→C ; A→C; 翻译:模拟汉诺塔问题的移动规则:获得奖励的移动方法还是有可能的. 相关经典题目延伸: 引用自百度百科: 有三根相邻的柱子,标号为A,B…
** 汉诺塔计数** 汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具. 大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上(可以借助第三根柱子做缓冲).并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘. 如图[1.jpg]是现代"山寨"版的该玩具.64个圆盘太多了,所以减为7个,金刚石和黄金都以木头代替了-但道理是相同的. 据说完成大梵天的命令需要太多…
//================================================= // File Name : Tower_demo //------------------------------------------------------------------------------ // Author : Common //主类 //Function : Tower_demo public class Tower_demo { static int nDisks…
/*汉诺塔递归 * 1.将编号0-N-1个圆盘,从A塔座移动到B上面 * 2.将编号N的1个圆盘,从A移动到C上面 * 3.最后将B上面的N-1个圆盘移动到C上面 * 注意:盘子的编号从上到下1-N * */ public class HannoTower_Recursion { public static void main(String[] args) { int nDisk = 3; doTowers(nDisk,'A','B','C'); } private static void do…
public class hanio { /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub //3层汉诺塔 A B C三个柱子 h(3, 'A', 'B', 'C'); } public static void h(int n,char a,char b,char c){ if(n>0){ //把n-1个盘子A放到C h(n-1, a, c, b); /…
汉诺塔问题的描述如下:有3根柱子A.B和C,在A上从上往下按照从小到大的顺序放着一些圆盘,以B为中介,把盘子全部移动到C上.移动过程中,要求任意盘子的下面要么没有盘子,要么只能有比它大的盘子.编程实现3阶汉诺塔的求解步骤. 思路如下: 要实现3阶汉诺塔的求解步骤,也就是说初始状态时,A上从上到下有三个盘子,分别为1号盘.2号盘和3号盘,其中1号盘最小,3号盘最大: 判断剩余盘子个数,如果只有一个盘子就退出迭代,如果有大于一个盘子就继续迭代. 代码如下: public class HanoiTow…
/*汉诺塔非递归实现--利用栈 * 1.创建一个栈,栈中每个元素包含的信息:盘子编号,3个塔座的变量 * 2.先进栈,在利用循环判断是否栈空, * 3.非空情况下,出栈,检查是否只有一个盘子--直接移动,否则就模拟前面递归的情况--非1的情况 * 4.直到栈空就结束循环,就完成全部的移动. * */ class Stack11{ Towers[] tt = new Towers[20]; int top = -1; public boolean isEmpty(){ return top ==…
public class HNT { public static void main(String[] args) { HNT a1 = new HNT(); a1.lToR(10); //给汉诺塔a1左边放10阶的层数,把左边的10阶移动至右边. } private boolean pHToM(int num,String a,String b,String c) { //打印移动数据,从a移动到c. if (num == 1) { //只移动一层的情况,return false表示,如果nu…
汉诺塔简介 最近在看数据结构和算法,遇到了一个非常有意思的问题--汉诺塔问题. 先看下百度百科是怎么定义汉诺塔的规则的: 汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘. 额,好吧,好像有点啰里啰嗦的.其实一句话就是,在三个柱子之间移动盘子,一次只能移动一个,并…
前言:递归(recursion):递归满足2个条件 1)有反复执行的过程(调用自身) 2)有跳出反复执行过程的条件(递归出口) 第一题:汉诺塔 对于这个汉诺塔问题,在写递归时,我们只需要确定两个条件: 1.递归何时结束? 2.递归的核心公式是什么?即: 怎样将n个盘子全部移动到C柱上? 即:若使n个盘子全部移动到C柱上,上一步应该做什么? ​ 代码实现 package diguui; public class digui1 { public static void hanoi(int n,int…
递归是许多经典算法的backbone, 是一种常用的高效的编程策略.简单的几行代码就能把一团遭的问题迎刃而解.这篇博客主要通过解决汉诺塔问题来理解递归的精髓. 汉诺塔问题简介: 在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片,1. 一次只移动一片: 2. 不管在哪根针上,小片必在大片上…
1. 问题来源: 汉诺塔(河内塔)问题是印度的一个古老的传说. 法国数学家爱德华·卢卡斯曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面.僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔.…
汉诺塔  四根所需要的步数的规律: 规律:a[1]=1;a[2]=a[1]+2;a[3]=a[2]+2;(2个加2^1)a[4]=a[3]+4;a[5]=a[4]+4;a[6]=a[5]+4;(3个加2^2);…………………………………………(4个加2^3); 汉诺塔II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 4548    …