这一节我们总结FM三兄弟FNN/PNN/DeepFM,由远及近,从最初把FM得到的隐向量和权重作为神经网络输入的FNN,到把向量内/外积从预训练直接迁移到神经网络中的PNN,再到参考wide&Deep框架把人工特征交互替换成FM的DeepFM,我们终于来到了2017年... FNN FNN算是把FM和深度学习最早的尝试之一.可以从两个角度去理解FNN:从之前Embedding+MLP的角看,FNN使用FM预训练的隐向量作为第一层可以加快模型收敛.从FM的角度来看,FM局限于二阶特征交互信息,想要…
之前总结了PNN,NFM,AFM这类两两向量乘积的方式,这一节我们换新的思路来看特征交互.DeepCrossing是最早在CTR模型中使用ResNet的前辈,DCN在ResNet上进一步创新,为高阶特征交互提供了新的方法并支持任意阶数的特征交叉. 以下代码针对Dense输入更容易理解模型结构,针对spare输入的代码和完整代码…
这一节我们总结FM另外两个远亲NFM,AFM.NFM和AFM都是针对Wide&Deep 中Deep部分的改造.上一章PNN用到了向量内积外积来提取特征交互信息,总共向量乘积就这几种,这不NFM就带着element-wise(hadamard) product来了.AFM则是引入了注意力机制把NFM的等权求和变成了加权求和. 以下代码针对Dense输入感觉更容易理解模型结构,针对spare输入的代码和完整代码…
xDeepFM用改良的DCN替代了DeepFM的FM部分来学习组合特征信息,而FiBiNET则是应用SENET加入了特征权重比NFM,AFM更进了一步.在看两个model前建议对DeepFM, Deep&Cross, AFM,NFM都有简单了解,不熟悉的可以看下文章最后其他model的博客链接. 以下代码针对Dense输入更容易理解模型结构,针对spare输入的代码和完整代码 https://github.com/DSXiangLi/CTR xDeepFM 模型结构 看xDeepFM的名字和De…
背景 这一篇我们从基础的深度ctr模型谈起.我很喜欢Wide&Deep的框架感觉之后很多改进都可以纳入这个框架中.Wide负责样本中出现的频繁项挖掘,Deep负责样本中未出现的特征泛化.而后续的改进要么用不同的IFC让Deep更有效的提取特征交互信息,要么是让Wide更好的记忆样本信息 Embedding + MLP 点击率模型最初在深度学习上的尝试是从简单的MLP开始的.把高维稀疏的离散特征做Embedding处理,然后把Embedding拼接作为MLP的输入,经过多层全联接神经网络的非线性变…
CTR学习笔记系列的第一篇,总结在深度模型称王之前经典LR,FM, FFM模型,这些经典模型后续也作为组件用于各个深度模型.模型分别用自定义Keras Layer和estimator来实现,哈哈一个是旧爱一个是新欢.特征工程依赖feature_column实现,这里做的比较简单在后面的深度模型再好好搞.完整代码在这里https://github.com/DSXiangLi/CTR 问题定义 CTR本质是一个二分类问题,$X \in R^N $是用户和广告相关特征, \(Y \in (0,1)\)…
GIS案例学习笔记-明暗等高线提取地理模型构建 联系方式:谢老师,135-4855-4328,xiexiaokui#qq.com 目的:针对数字高程模型,通过地形分析,建立明暗等高线提取模型,生成具有明暗阴影效果的地形. 操作时间:25分钟 数据:chp12/ex1/数字高程模型DEM 建模过程 模型运行界面 模型运行结果 彩色合成效果 联系方式:谢老师,135-4855-4328,xiexiaokui#qq.com…
第1章 PyTorch与深度学习 深度学习的应用 接近人类水平的图像分类 接近人类水平的语音识别 机器翻译 自动驾驶汽车 Siri.Google语音和Alexa在最近几年更加准确 日本农民的黄瓜智能分拣 肺癌检测 准确度高于人类的语言翻译 读懂图片中的图像含义 现今深度学习应用中最受欢迎的技术和出现的时间点 技术 年份 神经网络 1943 反向传播 20世纪60年代初期 卷积神经网络 1979 循环神经网络 1980 长短期记忆网络 1997 深度学习过去的叫法 20世纪70年代叫控制论(cyb…
不多说,直接上干货! 十.总结与展望 1)Deep learning总结 深度学习是关于自动学习要建模的数据的潜在(隐含)分布的多层(复杂)表达的算法.换句话来说,深度学习算法自动的提取分类需要的低层次或者高层次特征.高层次特征,一是指该特征可以分级(层次)地依赖其他特征,例如:对于机器视觉,深度学习算法从原始图像去学习得到它的一个低层次表达,例如边缘检测器,小波滤波器等,然后在这些低层次表达的基础上再建立表达,例如这些低层次表达的线性或者非线性组合,然后重复这个过程,最后得到一个高层次的表达.…
本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱好者,互联网技术发烧友 微博:伊直都在0221 QQ:951226918 ---------------------------------…