1.需求背景 移动互联网时代,海量的用户每天产生海量的数量,这些海量数据远不是一张表能Hold住的.比如 用户表:支付宝8亿,微信10亿.CITIC对公140万,对私8700万. 订单表:美团每天几千万,淘宝历史订单百亿.千亿. 交易流水表 2.选择方案 (1)NoSQL/NewSQL(不选择) 选择RDBMS,不选择NoSQL/NewSQL,主要是因为NoSQL/NewSQL可靠性无法与RDBMS相提并论.RDBMS有以下几个优点: RDBMS生态完善: RDBMS绝对稳定: RDBMS的事务…
每个优秀的程序员和架构师都应该掌握分库分表,这是我的观点. 移动互联网时代,海量的用户每天产生海量的数量,比如: 用户表 订单表 交易流水表 以支付宝用户为例,8亿:微信用户更是10亿.订单表更夸张,比如美团外卖,每天都是几千万的订单.淘宝的历史订单总量应该百亿,甚至千亿级别,这些海量数据远不是一张表能Hold住的.事实上MySQL单表可以存储10亿级数据,只是这时候性能比较差,业界公认MySQL单表容量在1KW以下是最佳状态,因为这时它的BTREE索引树高在3~5之间. 既然一张表无法搞定,那…
MySQL纯透明的分库分表技术还没有  种树人./oneproxy --proxy-address=:3307 --admin-username=admin --admin-password=D033E22AE348AEB5660FC2140AEC35850C4DA997 --proxy-master-addresses=172.16.132.87:3306@default --proxy-master-addresses=172.16.3.92:3306@server2 --proxy-use…
一.前言 在前面的文章Mysql系列四:数据库分库分表基础理论中,已经说过分库分表需要应对的技术难题有如下几个: 1. 分布式全局唯一id 2. 分片规则和策略 3. 跨分片技术问题 4. 跨分片事物问题 下面我们来看一下Mycat是如何解决分布式全局唯一id的问题的 二.Mycat全局序列号 Mycat保证id唯一的方式有如下几个: 1)本地文件方式 2)数据库方式 3)时间戳方式 4)ZKID生成器 5)ZK递增ID 推荐使用第4,5种 以上5中方式都要统一在server.xml文件中开启全…
上一章已经讲述分库分表算法选型,本章主要讲述分库分表技术选型 文中关联上一章,若下文出现提及其时,可以点击 分库分表算法方案与技术选型(一) 主要讲述 框架比较 sharding-jdbc.zdal 代码实现样例,如需源码可在后文中查看 主键生成策略 可以按需阅读文章 点赞再看,关注公众号:[地藏思维]给大家分享互联网场景设计与架构设计方案 掘金:地藏Kelvin https://juejin.im/user/5d67da8d6fb9a06aff5e85f7 常见框架 除了原生JDBC,网上常见…
背景 近期在项目中需要使用多数据源,其中有一些表的数据量比较大,需要对其进行分库分表:而其他数据表数据量比较正常,单表就可以. 项目中可能使用其他组的数据源数据,因此需要多数据源支持. 经过调研多数据源配置比较方便.在该项目中分库分表的策略比较简单,仅根据一个字段分就可以,因此分库分表方案选用比较流行方便易用的 sharding-jdbc 需要实现的目标是 根据学生姓名字段 student_name 进行分表,但是不需要分库.数据表是student_hist0 - student_hist9 引…
[编者按]数据库分库分表从互联网时代开启至今,一直是热门话题.在NoSQL横行的今天,关系型数据库凭借其稳定.查询灵活.兼容等特性,仍被大多数公司作为首选数据库.因此,合理采用分库分表技术应对海量数据和高并发对数据库的冲击,是各大互联网公司不可避免的问题. 虽然很多公司都致力于开发自己的分库分表中间件,但截止目前,仍无完美的开源解决方案覆盖此领域. 分库分表适用场景 分库分表用于应对当前互联网常见的两个场景——大数据量和高并发.通常分为垂直拆分和水平拆分两种. 垂直拆分是根据业务将一个库(表)拆…
携程酒店订单Elastic Search实战:http://www.lvesu.com/blog/main/cms-610.html 为什么分库分表后不建议跨分片查询:https://www.jianshu.com/p/1a0c6eda6f63 分库分表技术演进(阿里怎么分):https://mp.weixin.qq.com/s/3ZxGq9ZpgdjQFeD2BIJ1MA 1.需求背景 移动互联网时代,海量的用户每天产生海量的数量,这些海量数据远不是一张表能Hold住的.比如 用户表:支付宝8…
数据库分库分表从互联网时代开启至今,一直是热门话题.在NoSQL横行的今天,关系型数据库凭借其稳定.查询灵活.兼容等特性,仍被大多数公司作为首选数据库.因此,合理采用分库分表技术应对海量数据和高并发对数据库的冲击,是各大互联网公司不可避免的问题. 虽然很多公司都致力于开发自己的分库分表中间件,但截止目前,仍无完美的开源解决方案覆盖此领域. 分库分表适用场景 分库分表用于应对当前互联网常见的两个场景——大数据量和高并发.通常分为垂直拆分和水平拆分两种. 垂直拆分是根据业务将一个库(表)拆分为多个库…
最近与同行科技交流,经常被问到分库分表与分布式数据库如何选择,网上也有很多关于中间件+传统关系数据库(分库分表)与NewSQL分布式数据库的文章,但有些观点与判断是我觉得是偏激的,脱离环境去评价方案好坏其实有失公允.本文通过对两种模式关键特性实现原理对比,希望可以尽可能客观.中立的阐明各自真实的优缺点以及适用场景. 一.NewSQL数据库先进在哪儿? 首先关于“中间件+关系数据库分库分表”算不算NewSQL分布式数据库问题,国外有篇论文pavlo-newsql-sigmodrec,如果根据该文中…
读写分离 何为读写分离? 见名思意,根据读写分离的名字,我们就可以知道:读写分离主要是为了将对数据库的读写操作分散到不同的数据库节点上. 这样的话,就能够小幅提升写性能,大幅提升读性能. 我简单画了一张图来帮助不太清楚读写分离的小伙伴理解. 一般情况下,我们都会选择一主多从,也就是一台主数据库负责写,其他的从数据库负责读. 主库和从库之间会进行数据同步,以保证从库中数据的准确性. 这样的架构实现起来比较简单,并且也符合系统的写少读多的特点. ​ 读写分离会带来什么问题?如何解决? 读写分离对于提…
最近忙于项目已经好久几天没写博客了,前2篇文章我给大家介绍了搭建基础springMvc+mybatis的maven工程,这个简单框架已经可以对付一般的小型项目.但是我们实际项目中会碰到很多复杂的场景,比如数据量很大的情况下如何保证性能.今天我就给大家介绍数据库分库分表的优化,本文介绍mybatis结合当当网的sharding-jdbc分库分表技术(原理这里不做介绍) 首先在pom文件中引入需要的依赖 <dependency> <groupId>com.dangdang</gr…
为什么使用分库分表? 如下内容,引用自 Sharding Sphere 的文档,写的很大气. <ShardingSphere > 概念 & 功能 > 数据分片> 传统的将数据集中存储至单一数据节点的解决方案,在性能.可用性和运维成本这三方面已经难于满足互联网的海量数据场景. 1)性能 从性能方面来说,由于关系型数据库大多采用 B+ 树类型的索引,在数据量超过阈值的情况下,索引深度的增加也将使得磁盘访问的 IO 次数增加,进而导致查询性能的下降. 同时,高并发访问请求也使得集…
概述 分库分表的必要性 首先我们来了解一下为什么要做分库分表.在我们的业务(web应用)中,关系型数据库本身比较容易成为系统性能瓶颈,单机存储容量.连接数.处理能力等都很有限,数据库本身的“有状态性”导致了它并不像Web和应用服务器那么容易扩展.那么在我们的业务中,是否真的有必要进行分库分表,就可以从上面几个条件来考虑. · 单机储存容量.您的数据量是否在单机储存中碰到瓶颈.比如饿了么一天产生的用户行为数据就有24T,那么在传统的单机储存中肯定是不够的. · 连接数.处理能力.在我们的用户量达到…
前言 公司最近在搞服务分离,数据切分方面的东西,因为单张包裹表的数据量实在是太大,并且还在以每天60W的量增长. 之前了解过数据库的分库分表,读过几篇博文,但就只知道个模糊概念, 而且现在回想起来什么都是模模糊糊的. 今天看了一下午的数据库分库分表,看了很多文章,现在做个总结,“摘抄”下来.(但更期待后期的实操) 会从以下几个方面说起: 第一部分:实际网站发展过程中面临的问题. 第二部分:有哪几种切分方式,垂直和水平的区别和适用面. 第三部分:目前市面有的一些开源产品,技术,它们的优缺点是什么.…
1 为什么要分库分表 物理服务机的CPU.内存.存储设备.连接数等资源有限,某个时段大量连接同时执行操作,会导致数据库在处理上遇到性能瓶颈.为了解决这个问题,行业先驱门充分发扬了分而治之的思想,对大库表进行分割, 然后实施更好的控制和管理,同时使用多台机器的CPU.内存.存储,提供更好的性能.而分治有两种实现方式:垂直拆分和水平拆分. 2 垂直拆分(Scale Up 纵向扩展) 垂直拆分分为垂直分库和垂直分表,主要按功能模块拆分,以解决各个库或者各个表之间的资源竞争.比如分为订单库.商品库.用户…
分区 工作原理 对用户而言,分区表是一个独立的逻辑表,但是底层MySQL将其分成多个物理子表,这对用户来说是透明的,每一个分区表都会使用一个独立的表文件. 如果数据量比较大,可以进行分区.分区对PHP层面是无感知的,对代码没有改变.但是需要对mysql的表来做一个物理层面的拆分.将数据通过一些策略进行拆分,客户也是无感知的,对业务逻辑也没有什么影响. 创建表时使用partition by 子句定义每个分区存放的数据,比如年龄,地区等等.执行查询时,优化器会根据分区定义过滤那些没有我们需要数据的分…
0 引言 当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了.分表的目的就在于此,减小数据库的负担,缩短查询时间. mysql中有一种机制是表锁定和行锁定,是为了保证数据的完整性.表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行.行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作. 1 分表 1.1 大数据量并且访问频繁的表,将其分为若干表 某网站现在的数据量至多是5000万条,可以设计每张表容纳的数据量是500…
在我们的项目发展到一定阶段之后,随着数据量的增大,分库分表就变成了一件非常自然的事情.常见的分库分表方式有两种:客户端模式和服务器模式,这两种的典型代表有sharding-jdbc和MyCat.所谓的客户端模式是指在各个连接数据库的客户端中引用额外提供的jar包,以对连接数据库的过程进行封装,从而达到根据客户端的配置,将不同的请求分发到不同的数据库中的目的:而服务端模式是指,搭建一个数据库服务,这个服务只是架设在真实数据库集群前的一个代理层,其能够正常接收和解析客户端传入的SQL语句,然后根据其…
1.面试题 分库分表之后,id主键如何处理? 2.面试官心里分析 其实这是分库分表之后你必然要面对的一个问题,就是id咋生成?因为要是分成多个表之后,每个表都是从1开始累加,那肯定不对啊,需要一个全局唯一的id来支持.所以这都是你实际生产环境中必须考虑的问题. 3.面试题剖析 (1)数据库自增id 这个就是说你的系统里每次得到一个id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个id.拿到这个id之后再往对应的分库分表里去写入. 这个方案的好处就是方便简单,谁…
(1)数据库自增id 这个就是说你的系统里每次得到一个id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个id.拿到这个id之后再往对应的分库分表里去写入. 这个方案的好处就是方便简单,谁都会用:缺点就是单库生成自增id,要是高并发的话,就会有瓶颈的:如果你硬是要改进一下,那么就专门开一个服务出来,这个服务每次就拿到当前id最大值,然后自己递增几个id,一次性返回一批id,然后再把当前最大id值修改成递增几个id之后的一个值:但是无论怎么说都是基于单个数据库.…
一.序言 在实际业务中,单表数据增长较快,很容易达到数据瓶颈,比如单表百万级别数据量.当数据量继续增长时,数据的查询性能即使有索引的帮助下也不尽如意,这时可以引入数据分库分表技术. 本文将基于SpringBoot+MybatisPlus+Sharding-JDBC+Mysql实现企业级分库分表. 1.组件及版本选择 SpringBoot 2.6.x MybatisPlus 3.5.0 Sharding-JDBC 4.1.1 Mysql 5.7.35 2.预期目标 使用上述组件实现分库分表,简化起…
原文地址:http://blog.csdn.net/zwan0518/article/details/11972853 目录(?)[-] 一查询优化 1创建索引 2缓存的配置 3slow_query_log分析 4分库分表 5子查询优化 二数据转移 21插入数据   如今随着互联网的发展,数据的量级也是撑指数的增长,从GB到TB到PB.对数据的各种操作也是愈加的困难,传统的关系性数据库已经无法满足快速查询与插入数据的需求.这个时候NoSQL的出现暂时解决了这一危机.它通过降低数据的安全性,减少对…
本系列目录 CRL快速开发框架系列教程一(Code First数据表不需再关心) CRL快速开发框架系列教程二(基于Lambda表达式查询) CRL快速开发框架系列教程三(更新数据) CRL快速开发框架系列教程四(删除数据) CRL快速开发框架系列教程五(使用缓存) CRL快速开发框架系列教程六(分布式缓存解决方案) CRL快速开发框架系列教程七(使用事务) CRL快速开发框架系列教程八(使用CRL.Package) CRL快速开发框架系列教程九(导入/导出数据) CRL快速开发框架系列教程十(…
关于分库分表方案详细介绍 http://blog.csdn.net/bluishglc/article/details/7696085 这里就不作详细描述了 分库分表方案基本脱离不了这个结构,受制于实现的难度,好像没有看到有很方便的实现方案框架 为了解决此问题,在CRL框架基础上作了扩展,使CRL能很好实现此方案,以之前了解到的需求,基本能满足了 本方案拆分结构表示为 会员为业务核心,所有业务围绕会员来进行,所以垂直划分用会员编号作索引,将会员分配到不同的库 会员订单增长量是不固定的,所以需要平…
作为一种数据存储层面上的水平伸缩解决方案,数据库Sharding技术由来已久,很多海量数据系统在其发展演进的历程中都曾经历过分库分表的Sharding改造阶段.简单地说,Sharding就是将原来单一数据库按照一定的规则进行切分,把数据分散到多台物理机(我们称之为Shard)上存储,从而突破单机限制,使系统能以Scale-Out的方式应对不断上涨的海量数据,但是这种切分对上层应用来说是透明的,多个物理上分布的数据库在逻辑上依然是一个库.实现Sharding需要解决一系列关键的技术问题,这些问题主…
作者:老顾聊技术   搜云库技术团队  来源:https://www.toutiao.com/i6677459303055491597 一.前言 中大型项目中,一旦遇到数据量比较大,小伙伴应该都知道就应该对数据进行拆分了.有垂直和水平两种. 垂直拆分比较简单,也就是本来一个数据库,数据量大之后,从业务角度进行拆分多个库.如下图,独立的拆分出订单库和用户库. 水平拆分的概念,是同一个业务数据量大之后,进行水平拆分. 上图中订单数据达到了4000万,我们也知道mysql单表存储量推荐是百万级,如果不…
大数据与云计算的关系是什么,Hadoop又如何参与其中,Nosql在什么位置,与BI又有什么关系?以下这篇文字讲他们的关系讲的非常清楚.  在谈大数据的时候,首先谈到的就是大数据的4V特性,即类型复杂,海量,快速和价值.IBM原来谈大数据的时候谈3V,没有价值这个V.而实际我们来看4V更加恰当,价值才是大数据问题解决的最终目标,其它3V都是为价值目标服务.在有了4V的概念后,就很容易简化的来理解大数据的核心,即大数据的总体架构包括三层,数据存储,数据处理和数据分析.类型复杂和海量由数据存储层解决…
一.背景 MySQL作为最流行的关系型数据库产品之一,当数据规模增大遭遇性能瓶颈时,最容易想到的解决方案就是分库分表.无论是进行水平拆分还是垂直拆分,第一步必然需要数据迁移与同步.由此可以衍生出一系列数据迁移过程中的需求: 原本一张表迁移到单库多表(或多库多表),这是最基本的需求: 原本单库多表(或多库多表)迁移到新的多库多表(因表设计不合理.数据规模增大等原因导致需要再次分库分表) 新表与旧表的表结构可能不一致,如:类型表更(自增主键id由int改为bigint).字段数量不一致(删减.增加)…
作为一种数据存储层面上的水平伸缩解决方案,数据库Sharding技术由来已久,很多海量数据系统在其发展演进的历程中都曾经历过分库分表的Sharding改造阶段.简单地说,Sharding就是将原来单一数据库按照一定的规则进行切分,把数据分散到多台物理机(我们称之为Shard)上存储,从而突破单机限制,使系统能以Scale-Out的方式应对不断上涨的海量数据,但是这种切分对上层应用来说是透明的,多个物理上分布的数据库在逻辑上依然是一个库.实现Sharding需要解决一系列关键的技术问题,这些问题主…