论文原址:https://arxiv.org/abs/1811.07275 摘要 一个训练好的网络模型由于其模型捕捉的特征中存在大量的重叠,可以在不过多的降低其性能的条件下进行压缩剪枝.一些skip/Dense网络结构一定程度上减弱了重叠的现象,但这种做法引入了大量的计算及内存.本文从更改训练方式的角度来解决上述问题.本文发现,通过对模型进行临时裁剪,并对一定的filter进行恢复,重复操作,可以减少特征中的重叠效应,同时提高了模型的泛化能力.本文证明当前的压缩标准在语义上并不是最优的,本文引入…