AI之旅(5):正则化与牛顿方法】的更多相关文章

前置知识   导数,矩阵的逆 知识地图   正则化是通过为参数支付代价的方式,降低系统复杂度的方法.牛顿方法是一种适用于逻辑回归的求解方法,相比梯度上升法具有迭代次数少,消耗资源多的特点. 过拟合与欠拟合   回顾线性回归和逻辑回归这两个算法,我们发现特征这个词汇在频繁出现.特征是从不同的角度对事物进行描述,特征数量会决定模型的复杂程度和最终的性能表现.   为了方便讨论,我们通过添加高阶多项式的方法来增加特征数量.原始数据集中只有一个特征,依次添加原始特征的2次方,3次方......直至6次方…
前置知识   矩阵.求导 知识地图   学习一个新事物之前,先问两个问题,我在哪里?我要去哪里?这两个问题可以避免我们迷失在知识的海洋里,所以在开始之前先看看地图.   此前我们已经为了解线性回归做了一点准备工作,现在开始正式进入主题,总共需要迈过三个台阶.希望文章结束的时候,我们能轻松愉悦地摘下这颗星星. 从一个例子开始   假设我们是市场营销人员,现在有一些房屋历史销售数据,这些数据中包含了房屋的楼盘.均价.面积,以及对应的房屋销售情况.现在有一个新开楼盘,已知新开楼盘的主要信息,如何预测楼…
在讲义<线性回归.梯度下降>和<逻辑回归>中我们提到可以用梯度下降或梯度上升的方式求解θ.在本文中将讲解另一种求解θ的方法:牛顿方法(Newton's method). 牛顿方法(Newton's method) 逻辑回归中利用Sigmoid函数g(z)和梯度上升来最大化ℓ(θ).现在我们讨论另一个最大化ℓ(θ)的算法----牛顿方法. 牛顿方法是使用迭代的方法寻找使f(θ)=0的θ值,在这里θ是一个真实的值,不是一个参数,只不过θ的真正取值不确定.牛顿方法数学表达式为: 牛顿方法…
本博客已经迁往http://www.kemaswill.com/, 博客园这边也会继续更新, 欢迎关注~ 牛顿方法是一种求解等式的非常有效的数值分析方法. 1.  牛顿方法 假设\(x_0\)是等式的根\(r\)的一个比较好的近似, 且\(r=x_0+h\), 所以\(h\)衡量了近似值\(x_0\)和真实的根\(r\)之间的误差. 假定\(h\)很小, 根据泰勒展开式: $$0=f(r)=f(x_0+h)\approx f(x_0)+hf'(x_0)$$ 所以, 当\(f'(x_0)\)不接近…
本节内容 牛顿方法 指数分布族 广义线性模型 之前学习了梯度下降方法,关于梯度下降(gradient descent),这里简单的回顾下[参考感知机学习部分提到的梯度下降(gradient descent)].在最小化损失函数时,采用的就是梯度下降的方法逐步逼近最优解,规则为其实梯度下降属于一种优化方法,但梯度下降找到的是局部最优解.如下图: 本节首先讲解的是牛顿方法(NewTon’s Method).牛顿方法也是一种优化方法,它考虑的是全局最优.接着还会讲到指数分布族和广义线性模型.下面来详细…
前置知识   求导 知识地图   回想线性回归和逻辑回归,一个算法的核心其实只包含两部分:代价和梯度.对于神经网络而言,是通过前向传播求代价,反向传播求梯度.本文介绍其中第一部分. 多元分类:符号转换   神经网络是AI世界的一座名山,这座山既神秘又宏大.看过的人都说好,但是具体好在哪里,却不易用语言表述.只有一步一步耐心爬上去,登顶之后才能俯瞰风景.   毫无疑问登顶的过程不会一帆风顺,总会遇到大大小小的困难,然而一旦我们对困难有了心理准备,登顶也不再是件难事.只是看文章不易理解,一起拿出笔和…
前置知识   无 知识地图 自学就像在海中游泳   当初为什么会想要了解机器学习呢,应该只是纯粹的好奇心吧.AI似乎无处不在,又无迹可循.为什么一个程序能在围棋的领域战胜人类,程序真的有那么聪明吗?如果掌握机器学习,就能创造属于自己的AI吗?   怀着这样的好奇心,开始了在机器学习领域的探索.学习的第一步是从<吴恩达机器学习>公开课开始的,不可否认对于一个初学者而言,这始终是最好的入门课程.   同样的知识也有不同的学法,比如一个公式摆在面前,浅一点的学法是直接把它背下来便于应用.深一点的学法…
1. 什么是Dropout(随机失活) 就是在神经网络的Dropout层,为每个神经元结点设置一个随机消除的概率,对于保留下来的神经元,我们得到一个节点较少,规模较小的网络进行训练. 标准网络和dropout网络: 左边是简单的模型,右边是含有dropout的模型 l: hidden layer index (隐藏层索引) z: denote the vector of inputs into layer l(表示l层的向量输入) y: output of each layer(每一层的输出)…
在上一篇中提到的Logistic回归是利用最大似然概率的思想和梯度上升算法确定θ,从而确定f(θ).本篇将介绍还有一种求解最大似然概率ℓ(θ)的方法,即牛顿迭代法. 在牛顿迭代法中.如果一个函数是,求解θ值使得f(θ)=0. 在图1中可知, 图1 选择一个点,相应函数值为,并将相应的切线与x轴相交的点记为,所以 ,依此类推可知牛顿迭代规律. 为了求得最大似然概率ℓ(θ).让,所以牛顿迭代方法确定最大似然概率的公式为: 在Logistic回归中,θ是一个向量. 因此公式可表示为: H是一个n*n的…
前言: 随着超量类别PR和高精度的需求,人工特征方法局限性凸显出来,固定的特征hash压缩映射因其压缩损失.表现为特定的特征hash方法,在海量的同类数据集上近邻特性变差,而在不同类别的数据上面隔离性又出现问题. 既然人工构建的特征hash函数并不能满足每一个场景的需求,每个经验都有局限,且特征提取的压缩映射必然导致压缩损失,为何不略过此环节,使用数据来完成此过程.越多的数据可生成越精确的分类结果,这就引出了一站式图像处理PR方法--CNN方法.IPPR又从框架分治法回到一站式框架方法. 从20…