[模板]Min_25筛】的更多相关文章

用途 快速($O(\frac{n^{3/4}}{logn})$)地计算一些函数f的前缀和,以及(作为中间结果的)只计算质数的前缀和 一般要求f(p)是积性函数,$f(p)$是多项式的形式,且$f(p^k)$可以快速计算 做法 首先考虑求出范围内的质数的取值的和 如果有$f(p)=\sum{a_ip^i}$ 那么我们构造$h_i(x)=x^i$,不难发现$h_i$是完全积性的 就是说,把f在质数的时候的式子拆开,然后让它在不是质数的时候也成立 考虑求其中的一个h,接下来设$pri_j$是第j个质数…
P5325 [模板]Min_25筛 题目背景 模板题,无背景. 题目描述 定义积性函数$f(x)$,且$f(p^k)=p^k(p^k-1)$($p$是一个质数),求 $$\sum_{i=1}^n f(x)$$ 对$10^9+7$取模. 输入输出格式 输入格式: 一行一个整数$n$. 输出格式: 一个整数表示答案. 输入输出样例 输入样例#1: 复制 10 输出样例#1: 复制 263 输入样例#2: 复制 1000000000 输出样例#2: 复制 710164413 说明 $f(1)=1,f(…
\(\color{#0066ff}{ 题目描述 }\) 给定一个正整数\(N(N\le2^{31}-1)\) 求 \(ans_1=\sum_{i=1}^n\varphi(i)\) \(ans_2=\sum_{i=1}^n \mu(i)\) \(\color{#0066ff}{输入格式}\) 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 \(\color{#0066ff}{输出格式}\) 一共T行,每行两个用空格分隔的数ans1,ans2 \(\c…
终于知道发明者的正确的名字了,是Min_25,这个筛法速度为亚线性的\(O(\frac{n^{\frac{3}{4}}}{\log x})\),用于求解具有下面性质的积性函数的前缀和: 在 \(p\) 处是简单的低次多项式 在 \(p^c\) 处可以快速求值 貌似积性函数是指取一个积性函数 \(f(x)\) ,其在质数的位置上取值与所求函数相同.所以可以用来求n以内的质数的个数(取常函数 \(f(x)=1\) )以及质数的和(取恒等函数 \(f(x)=x\) ). 参考资料: loj#6235.…
原文链接https://www.cnblogs.com/zhouzhendong/p/Min-25.html 前置技能 埃氏筛法 整除分块(这里有提到) 本文概要 1. 问题模型 2. Min_25 筛 3. 模板题以及模板代码 问题模型 有一个积性函数 $f$ ,对于所有质数 $p$,$f(p)$ 是关于 $p$ 的多项式,$f(p^k)$ 非常容易计算(不一定是关于 p 的多项式). 求 $$\sum_{i=1}^{n} f(i)$$ $n\leq 10^{10}$ ${\rm Time\…
题目大意 给你 \(n,k\),求 \[ S_k(n)=\sum_{i=1}^n\sigma_0(i^k) \] 对 \(2^{64}\) 取模. 题解 一个min_25筛模板题. 令 \(f(n)=\sigma_0(n^k)\),那么 \(S_k(n)=\sum_{i=1}^nf(i)\),而且 \[ \begin{cases} f(1)&=1\\ f(p)&=k+1\\ f(p^c)&=kc+1 \end{cases} \] 直接上min_25筛就好了. 时间复杂度:\(O(\…
关于min_25筛的一些理解 如果想看如何筛个普通积性函数啥的,就别往下看了,下面没有的(QwQ). 下文中,所有的\(p\)都代表质数,\(P\)代表质数集合. 注意下文中定义的最小/最大质因子都是默认所有质因子本质不同. 即\(2*2*3*4*5*5\)的最小/次小质因子都是\(2\),最大/次大质因子都是\(5\). step1. 适用条件与思想 min_25筛用于求积性函数前缀和,即\(\sum_{i=1}^n f(i)\) . min_25筛相比于传统筛法来说(如莫比乌斯反演.杜教筛)…
本人在LOJ的第三题(前两题太水不好意思说了QwQ),欢迎大家踩std. 题目链接:LOJ 题目大意:定义函数 $f$:($minp$ 表示最小质因子) $$f(x)=\begin{cases}0&x=1\\x-2&x\in prime\\minp(x)-1&otherwise\end{cases}$$ 求 $f$ 前 $n$ 项的和对 $20190601$ 取模的值. $1\le n\le 10^{11}$. 考虑 min_25 筛中的 $g_0(n,j)$($0$ 次方,即满足…
前言 为什么叫学习小记呢?因为暂时除了模板题就没有做其他的东西了.(雾 这个东西折磨了我一整天,看得我身不如死,只好结合代码理解题解,差点死在机房.(话说半天综合半天竞赛真是害人不浅) 为了以后忘了再受荼毒,这里还是写一下,如果有人会看到的话,希望可以帮助到吧.(话说这个东西我已经拖了好久了啊!!!) (话说我怎么这么多话说啊?!!) Min_25 筛 这个东西是由聚聚\(\texttt{Min-25}\)发明了,所以我们称之为\(\texttt{Min-25}\)筛.(感觉有点民科了)那就不废…
杜教筛 \(\) 是 \(\) 的前缀和,\(\), \(\) 同理. 假设 \( × = ℎ\) ,并且 \(, \) 易求出,\(\) 难求出. 那么 \[H () = \sum_{ \cdot ≤} () () = \sum_{≤} () (\frac {} {})\\ = f(1)\cdot () + \sum_{2≤≤} () (\frac {} {})\] 有: \[f(1)\cdot G(n)=H(n)-\sum_{2≤≤} () (\frac {} {}) \] 整除分块,可以在…