DataFrame.nunique(),DataFrame.count()】的更多相关文章

1. nunique() DataFrame.nunique(axis = 0,dropna = True ) 功能:计算请求轴上的不同观察结果 参数: axis : {0或'index',1或'columns'},默认为0.0或'index'用于行方式,1或'列'用于列方式. dropna : bool,默认为True,不要在计数中包含NaN. 返回: Series >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]}) >…
弹性分布式数据集(Resilient Distributed Dataset,RDD) RDD是Spark一开始就提供的主要API,从根本上来说,一个RDD就是你的数据的一个不可变的分布式元素集合,在集群中跨节点分布,可以通过若干提供了转换和处理的底层API进行并行处理.每个RDD都被分为多个分区,这些分区运行在集群不同的节点上. RDD支持两种类型的操作,转化操作(transform)和行动操作(action).转化操作会有一个RDD生成一个新的RDD,行动操作则要计算出来一个结果.spark…
怎样解决python dataframe loc,iloc循环处理速度很慢的问题 1.问题说明 最近用DataFrame做大数据 处理,发现处理速度特别慢,追究原因,发现是循环处理时,loc,iloc速度都特别慢,当数据量特别大得时候真的是超级慢.查很多资料,发现没有详细说明,以下为解决办法 2.问题解决 使用 Pandas.Series.apply 方法,可以对一列数据快速进行处理 Series.apply(*func*, *convert_dtype=True*, *args=()*, **…
Pandas之Dataframe索引,排序,统计,重新设置索引 一:叠加 import pandas as pd a_list = [df1,df2,df3] add_data = pd.concat(a_list,ignore_index = True) 其中的ignore_index参数代表是否重新建立索引. 如果df比较多,可以采用如下方法建立a_list a_list = [] for i in range(len(df)): a_list.append(df[i]) 二:排序 df.s…
Pandas 讲解 Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的. Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具. pandas提供了大量能使我们快速便捷地处理数据的函数和方法.你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一. Series:一维数组,与Numpy中的一维array类似. 二者与Python基本的数据结构List也…
原网址 http://blog.sina.com.cn/s/blog_6bb07f83010152z0.html 在使用R做数据挖掘时,最常用的数据结构莫过于dataframe了,下面列出几种常见的dataframe的操作方法.1.查看数据 head(dataframe) # 查看数据前10行tail(dataframe) # 查看数据后10行 2.合并数据(1)data.frame(x,y)x,y是dataframe或者一列数据,x和y的行数一样,该操作得到一个新的dataframe,该dat…
          DataFrame       DataFrame是一个[表格型]的数据结构,可以看作是[由Series组成的字典](共用同一个索引).DataFrame由一定顺序排列的多列数据组成.设计初衷是将Series的使用场景从一维扩展到多维.DataFrame既有行索引,也有列索引.       · 行索引:index     · 列索引:columns     · 值:values(numpy的二维数组)         1)DataFrame的创建       最常用的方法是传…
怎样解决python dataframe loc,iloc循环处理速度很慢的问题 1.问题说明 最近用DataFrame做大数据 处理,发现处理速度特别慢,追究原因,发现是循环处理时,loc,iloc速度都特别慢,当数据量特别大得时候真的是超级慢.查很多资料,发现没有详细说明,以下为解决办法 2.问题解决 使用 Pandas.Series.apply 方法,可以对一列数据快速进行处理 Series.apply(*func*, *convert_dtype=True*, *args=()*, **…
一.创建DataFrame df=pd.DataFrame(np.arange(,).reshape(,)) my_col=dict(zip(range(),['A','B','C'])) df.rename(columns=my_col,inplace=True) print(df) print(type(df)) 结果为: A B C <class 'pandas.core.frame.DataFrame'> 一.at和iat的用法 at和iat,可选择指定行.指定列的单个元素. 1.at…
[Spark][Python][DataFrame][RDD]从DataFrame得到RDD的例子 $ hdfs dfs -cat people.json {"name":"Alice","pcode":"94304"}{"name":"Brayden","age":30,"pcode":"94304"}{"name&…