上一篇文章<从零开始一起学习SLAM | 为啥需要李群与李代数?>以小白和师兄的对话展开,受到了很多读者的好评.本文继续采用对话的方式来学习一下相机成像模型,这个是SLAM中极其重要的内容,必须得掌握哦~ 小白:师兄,上次听你讲了李群李代数,有种“听君一席话胜读十年书”的赶脚~后来看书感觉容易理解多了呢!师兄:是吗?那太好啦,给你讲的过程也加深了我的理解呢小白:那师兄今天要不要继续加深理解一下相机成像模型 的部分呢?师兄:额..好啊(感觉被套路了,不过想想上次小白师妹请客吃了烧烤呢)小白:讲完…
点"计算机视觉life"关注,置顶更快接收消息! 小白:师兄,g2o框架<从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码>,以及顶点<从零开始一起学习SLAM | 掌握g2o顶点编程套路>我都学完啦,今天给我讲讲g2o中的边吧!是不是也有什么套路? 师兄:嗯,g2o的边比顶点稍微复杂一些,不过前面你也了解了许多g2o的东西,有没有发现g2o的编程基本都是固定的格式(套路)呢? 小白:是的,我现在按照师兄说的g2o框架和顶点设计方法,再去看g2…
点"计算机视觉life"关注,置顶更快接收消息! ## 小白:师兄,上一次将的g2o框架<从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码>真的很清晰,我现在再去看g2o的那些优化的部分,基本都能看懂了呢! 师兄:那太好啦,以后多练习练习,加深理解 小白:嗯,我开始编程时,发现g2o的顶点和边的定义也非常复杂,光看十四讲里面,就有好几种不同的定义,完全懵圈状态...师兄,能否帮我捋捋思路啊 师兄:嗯,你说的没错,入门的时候确实感觉很乱,我最初也是花了些时间…
首发于公众号:计算机视觉life 旗下知识星球「从零开始学习SLAM」 这可能是最清晰讲解g2o代码框架的文章 理解图优化,一步步带你看懂g2o框架 小白:师兄师兄,最近我在看SLAM的优化算法,有种方法叫"图优化",以前学习算法的时候还有一个优化方法叫"凸优化",这两个不是一个东西吧? 师兄:哈哈,这个问题有意思,虽然它们中文发音一样,但是意思差别大着呢!我们来看看英文表达吧,图优化的英文是 graph optimization 或者 graph-based op…
点击公众号"计算机视觉life"关注,置顶星标更快接收消息! 本文编程练习框架及数据获取方法见文末获取方式 菜单栏点击"知识星球"查看「从零开始学习SLAM」一起学习交流 点云滤波后为什么还需要平滑? 小白:师兄,师兄,上次你说的点云滤波我学会啦,下一步怎么把点云变成网格啊? 师兄:滤波只是第一步,在网格化前我们还需要对滤波后的点云进行平滑(smoothing) 小白:不是已经滤波了吗?怎么还要平滑啊?滤波和平滑不一样吗? 师兄:确实不太一样.我们用RGB-D,激光…
对VSLAM和三维重建感兴趣的在计算机视觉life"公众号菜单栏回复"三维视觉"进交流群. 小白:师兄,上次你讲了点云拼接后,我回去费了不少时间研究,终于得到了和你给的参考结果差不多的点云,不过,这个点云"可远观而不可近看",放大了看就只有一个个稀疏的点了.究竟它能干什么呢? 师兄:这个问题嘛...基本就和SLAM的作用一样,定位和建图 小白:定位好理解,可是师兄说建图,这么稀疏的地图有什么用呢? 师兄:地图分很多种,稀疏的,稠密的,还有半稀疏的等,你输出…
本文提纲 先热热身点云是啥你知道点云优缺点吗?点云库PCL:开发者的福音PCL安装指北炒鸡简单的PCL实践留个作业再走先热热身 小白:hi,师兄,好久不见师兄:师妹好,上周单应矩阵作业做了吗?小白:嗯,做了,这个单应矩阵真的挺有意思的.作业之外,我发现了一个新技能...师兄:什么技能?小白:我发现很多网上流传的图片都可以用上次我学过的单应矩阵实现,你看这张图,我第一次看到还以为是真的 现在知道这不就是我们上节课讲的单应矩阵的变换吗?果然我在网上找到了原图 现在我也会用OpenCV里的单应函数做这…
小白最近在看文献时总是碰到一个奇怪的词叫“homography matrix”,查看了翻译,一般都称作“单应矩阵”,更迷糊了.正所谓:“每个字都认识,连在一块却不认识”就是小白的内心独白.查了一下书上的推导,总感觉有种“硬凑”的意味,于是又找到了师兄... 神奇的单应矩阵小白:师兄~单应矩阵是什么鬼啊?我看书上的推导,每一步勉强能看懂,但还是不太理解其背后的物理意义,感觉不能转化为自己理解的方式啊师兄:哦,我第一次看的时候也是这种感觉 小白:而且这个名字好绕口啊,我完全没法和它的物理意义联系起来…
自从小白向师兄学习了李群李代数和相机成像模型的基本原理后,感觉书上的内容没那么难了,公式推导也能推得动了,感觉进步神速,不过最近小白在学习对极几何,貌似又遇到了麻烦... 小白:师兄,对极几何这块你觉得重要吗?师兄:当然重要啦,这个是多视角立体视觉的核心啊 小白:那师兄一定得帮帮我讲清楚啊,最近在看书上这部分内容,感觉很难理解呢!师兄:哪里不理解?书上公式推导的挺详细了都 小白:这么说吧,公式推导我也能大概看懂,但总觉得不知道为啥这么推导,这样推导的物理意义是什么?师兄:哦哦,明白啦,就是不能转…
视觉 Vs. IMU 小白:师兄,好久没见到你了啊,我最近在看IMU(Inertial Measurement Unit,惯性导航单元)相关的东西,正好有问题求助啊 师兄:又遇到啥问题啦? 小白:是这样的,现在VIO(Visual-Inertial Odometry,视觉惯性里程计)很火,我就想试试把IMU测量的信息和图像进行简单的融合,这样利用IMU测量的先验信息,可以给图像一个比较好的初值... 师兄:嗯嗯,这个思路没问题的啊,图像信息和 IMU 确实存在一定互补性,两者各有所长,取长补短.…