这题有以下几个步骤 1.离线处理出每个点的作用范围 2.根据线段树得出作用范围 3.根据分治把每个范围内的点记录和处理 #include<bits/stdc++.h> using namespace std; typedef long long ll; const int maxn = 3e5 + 50; typedef pair<int, int> pii; #define bug cout << "bug" << endl; vect…
Extending Set of Points 我们能发现, 如果把x轴y轴看成点, 那么答案就是在各个连通块里面的x轴的个数乘以y轴的个数之和. 然后就变成了一个并查集的问题, 但是这个题目里面有撤销的操作, 所以我们要把加入和撤销操作变成 这个点影响(L , R)之间的询问, 然后把它丢到线段树里面分成log段, 然后我们dfs一遍线段树, 用按秩合并并查集取维护, 回溯的时候将并查集撤销. #include<bits/stdc++.h> #define LL long long #def…
传送门 线段树分治好题. 这道题实际上有很多不同的做法: cdq分治. lct. - 而我学习了dzyo的线段树分治+并查集写法. 所谓线段树分治就是先把操作分成lognlognlogn个连续不相交的区间分别维护信息. 最后按线段树从上到下再从左到右的遍历方式一起统计答案. 这道题可以按时间建树,每次相当于在一段区间里增加边. 最后统计二分图就行了,这个问题可以用并查集解决. 然而我们回溯上去的时候是需要撤销操作的,因此需要用并查集按秩合并. 代码: #include<bits/stdc++.h…
/* 思维难度几乎没有, 就是线段树分治check二分图 判断是否为二分图可以通过维护lct看看是否链接出奇环 然后发现不用lct, 并查集维护奇偶性即可 但是复杂度明明一样哈 */ #include<cstdio> #include<algorithm> #include<cstring> #include<queue> #include<iostream> #define f1 first #define f2 second #define…
Description Input Output Sample Input 4 5 1 2 2 3 3 4 4 1 2 4 3 1 5 2 2 3 2 1 2 Sample Output Connected Disconnected Connected HINT N<=100000 M<=200000 K<=100000 Solution 线段树分治,根据询问把每条边存在的时间区间拆成几个区间,然后覆盖到线段树上,最后$DFS$一遍线段树.用带撤销的并查集维护一下连通块个数,到线段树叶子…
把查询看做是在一条时间轴上.那么每条边都有几段存在时间.于是线段树分治就好了. 然而在bzoj上t掉了,不知道是常数大了还是写挂了. 以及brk不知道是啥做数组名过不了编译. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> #include<vector>…
之前学了一下线段树分治,这还是第一次写.思想其实挺好理解,即离线后把一个操作影响到的时间段拆成线段树上的区间,并标记永久化.之后一块处理,对于某个节点表示的时间段,影响到他的就是该节点一直到线段树根的所有操作.(语死早)这样可以把操作的插入和删除改为只有插入. 具体到这题,由于并查集没法删除边,我们考虑线段树分治.之后要考虑的问题就是如何用并查集判断是否为二分图,也即是否含奇环.假设现在图中有一个偶环,若给偶环两点加了一条边,可以发现无论去掉原偶环上哪一条边都不会改变新出现环的奇偶性.于是我们只…
题面 Bzoj 洛谷 题解 考虑用并查集维护图的连通性,接着用线段树分治对每个修改进行分治. 具体来说,就是用一个时间轴表示图的状态,用线段树维护,对于一条边,我们判断如果他的存在时间正好在这个区间内,那就把它用并查集并起来.最后对于一个询问,直接用并查集找就好了. 但是因为有撤销操作,所以在并查集合并的时候,我们将需要合并的两个点放进栈中,最后栈序撤销,所以只能考虑按秩合并而不能路径压缩. #include <map> #include <vector> #include <…
传送门 解题思路 可以离线,然后确定每个边的出现时间,算这个排序即可.然后就可以线段树分治了,连通性用并查集维护,因为要撤销,所以要按秩合并,时间复杂度\(O(nlog^2 n)\) 代码 #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> #include<vector> using namespace s…
题意及思路:https://blog.csdn.net/u013534123/article/details/89010251 之前cf有一个和这个相似的题,不过那个题只有合并操作,没有删除操作,直接并查集搞一搞就行了.对于这个题,因为有删除操作,我们对操作序列建一颗线段树,记录每个操作影响的区间操作就可以了.这里的并查集不能路径压缩,要按秩合并,这样复杂度是O(logn)的. 代码: #include <bits/stdc++.h> #define ls (o << 1) #de…