红黑树(依照4阶B树C++实现)】的更多相关文章

我在编写红黑树的时候类比这2-3-4树的原理来书写 语言标准:C++11 在Ubuntu 18.04上通过编译和测试 从刚开始只听说过这个概念,到学习,再到编出代码,然后在进行测试,最后完成代码一共花了大概三天时间 一棵红黑树要满足以下性质 我已经实现了AVL树(见博客随笔),但由于红黑树的统计性能优异,使用范围更广,所以就想着把红黑树实现一边 红黑树代码如下 /* * BinarySearchTree.h * 添加元素时需自己做判断元素是否合法 * Created on: 2020年1月29日…
上篇文章我们主要介绍了线性数据结构,本篇233酱带大家康康 无所不在的非线性数据结构之一:树形结构的特点和应用. 树形结构,是指:数据元素之间的关系像一颗树的数据结构.我们看图说话: 它具有以下特点: 每个节点都只有有限个子节点或无子节点: 没有父节点的节点称为根节点: 每一个非根节点有且只有一个父节点: 除了根节点外,每个子节点可以分为多个不相交的子树: 树里面没有环路(cycle) 维基百科中列举了计算机科学中树形结构的种类 233酱当然不会一个个讲,我们只挑一些熟悉的面孔:多叉树,二叉树,…
数据结构中常见的树(BST二叉搜索树.AVL平衡二叉树.RBT红黑树.B-树.B+树.B*树) 二叉排序树.平衡树.红黑树 红黑树----第四篇:一步一图一代码,一定要让你真正彻底明白红黑树 --- 很好…
树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: BST树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中: 如果BST树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树 的搜索性能逼近二分查找:但它比连续内存空间的二分查找的优点是,改变BST树结构 插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销: 如:…
B  树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中:否则,如果查询关键字比结点关键字小,就进入左儿子:如果比结点关键字大,就进入右儿子:如果左儿子或右儿子的指针为空,则报告找不到相应的关键字: 如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性…
(一)红黑树(Red-Black Tree) http://www.cnblogs.com/skywang12345/p/3245399.html#a1 它一种特殊的二叉查找树.红黑树的每个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black). 红黑树的特性: (1)每个节点或者是黑色,或者是红色.(2)根节点是黑色.(3)每个叶子节点(NIL)是黑色. [注意:这里叶子节点,是指为空(NIL或NULL)的叶子节点!](4)如果一个节点是红色的,则它的子节点必须是黑色的.(5)从…
二叉查找树(BST),平衡二叉查找树(AVL),红黑树(RBT),B~/B+树(B-tree).这四种树都具备下面几个优势: (1) 都是动态结构.在删除,插入操作的时候,都不需要彻底重建原始的索引树.最多就是执行一定量的旋转,变色操作来有限的改变树的形态.而这些操作所付出的代价都远远小于重建一棵树.这一优势在<查找结构专题(1):静态查找结构概论 >中讲到过. (2) 查找的时间复杂度大体维持在O(log(N))数量级上.可能有些结构在最差的情况下效率将会下降很快,比如二叉树 1.二叉查找树…
简介 首先,说一下在数据结构中为什么要引入树这种结构,在我们上篇文章中介绍的数组与链表中,可以发现,数组适合查询这种静态操作(O(1)),不合适删除与插入这种动态操作(O(n)),而链表则是适合删除与插入,而查询效率则就比较慢了,本文要分享学习的树就是为了平衡这种静态操作与动态操作的差距. 一.二叉查找树 简介 满足下面条件就是二叉查找树 任意节点左子树不为空,则左子树的值均小于根节点的值. 任意节点右子树不为空,则右子树的值均大于于根节点的值. 任意节点的左右子树也分别是二叉查找树. 没有键值…
某些教程不区分普通红黑树和左倾红黑树的区别,直接将左倾红黑树拿来教学,并且称其为红黑树,因为左倾红黑树与普通的红黑树相比,实现起来较为简单,容易教学.在这里,我们区分开左倾红黑树和普通红黑树. 红黑树是一种近似平衡的二叉查找树,从2-3树或2-3-4树衍生而来.通过对二叉树节点进行染色,染色为红或黑节点,来模仿2-3树或2-3-4树的3节点和4节点,从而让树的高度减小.2-3-4树对照实现的红黑树是普通的红黑树,而2-3树对照实现的红黑树是一种变种,称为左倾红黑树,其更容易实现. 使用平衡树数据…
在实际使用时会根据链表和有序数组等数据结构的不同优势进行选择.有序数组的优势在于二分查找,链表的优势在于数据项的插入和数据项的删除.但是在有序数组中插入数据就会很慢,同样在链表中查找数据项效率就很低.综合以上情况,二叉树可以利用链表和有序数组的优势,同时可以合并有序数组和链表的优势,二叉树也是一种常用的数据结构. 有序二叉树天然具有对数查找效率:二叉树天然具有链表特征. 与哈希表比较具有天然排序优势. Oracle索引是B- 树  Mysql是B+树 什么是B树(B-树)? 写在开头:B-树,就…