CVPR2013总结】的更多相关文章

CVPapers 网址: http://www.cvpapers.com/   ICCV2013 Papers about Object Detection: 1. Regionlets for Generic Object Detection. Xiaoyu Wang, Ming Yang, Shenghuo Zhu, Yuanqing Lin .(暂无源码提供) Website: http://www.xiaoyumu.com/project/detection 这篇文章提出了一种新的特征描…
前不久CVPR的结果出来了,首先恭喜我一个已经毕业工作的师弟中了一篇文章.完整的文章列表已经在CVPR的主页上公布了(链接),今天把其中一些感兴趣的整理一下,虽然论文下载的链接大部分还都没出来,不过可以follow最新动态.等下载链接出来的时候一一补上. 由于没有下载链接,所以只能通过题目和作者估计一下论文的内容.难免有偏差,等看了论文以后再修正. 显著性 Saliency Aggregation: A Data-driven Approach Long Mai, Yuzhen Niu, Fen…
As I walked through the large poster-filled hall at CVPR 2013, I asked myself, “Quo vadis Computer Vision?" (Where are you going, computer vision?)  I see lots of papers which exploit last year’s ideas, copious amounts of incremental research, and an…
一,人脸检测/跟踪 人脸检测/跟踪的目的是在图像/视频中找到各个人脸所在的位置和大小:对于跟踪而言,还需要确定帧间不同人脸间的对应关系. 1, Robust Real-time Object Detection. Paul Viola, Michael Jones. IJCV 2004. 入选理由: Viola的人脸检测工作使得人脸检测真正变得实时可用.他们发表了一系列文章,这篇是引用率最高的一篇. 2, Fast rotation invariant multi-view face detec…
来自:CVPR 2014   作者:Yi Sun ,Xiaogang Wang,Xiaoao Tang 题目:Deep Learning Face Representation from Predicting 10,000 Classes 主要内容:通过深度学习来进行图像高级特征表示(DeepID),进而进行人脸的分类. 长处:在人脸验证上面做,能够非常好的扩展到其它的应用,而且夸数据库有效性:在数据库中的类别越多时,其泛化能力越强,特征比較少,不像其它特征好几K甚至上M,好的泛化能力+只是拟合…
一.工具介绍及运行实例 相信计算机视觉领域的同道中人都知道这个Computer Vision Resource网站, http://www.cvpapers.com/  网页部分截图如下: 可以看到有太多论文集,比如CVPR2013年就有472篇,自己写了一个小工具,用来筛选感兴趣的论文 运行界面如下: 输入论文集网址和自己感兴趣的领域点击提交即可,其中关键字可以输入多个(不区分大小写),然后程序会按相关度从高到底的顺序给出论文列表 提交后运行部分截图如下: 这样可以大大减少我们筛选的工作量,然…
CVPR2013大部分文章都已经公开了,大家可以通过下面的网址访问: http://www.cv-foundation.org/openaccess/CVPR2013.py# 还有一篇根据CVPR2013.讨论Computer Vision的发展趋势的博客,也是不很错: http://quantombone.blogspot.jp/2013/07/cvpr-2013-three-trending-computer.html…
http://blog.csdn.net/zouxy09/article/category/1218765 图像卷积与滤波的一些知识点 图像卷积与滤波的一些知识点zouxy09@qq.comhttp://blog.csdn.net/zouxy09       之前在学习CNN的时候,有对卷积经常一些学习和整理,后来就烂尾了,现在稍微整理下,先放上来,以提醒和交流.一.线性滤波与卷积的基本概念      线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果.做法很…
摘要 近年来,深度学习方法在物体跟踪领域有不少成功应用,并逐渐在性能上超越传统方法.本文先对现有基于深度学习的目标跟踪算法进行了分类梳理,后续会分篇对各个算法进行详细描述. 看上方给出的3张图片,它们分别是同一个视频的第1,40,80帧.在第1帧给出一个跑步者的边框(bounding-box)之后,后续的第40帧,80帧,bounding-box依然准确圈出了同一个跑步者.以上展示的其实就是目标跟踪(visual object tracking)的过程.目标跟踪(特指单目标跟踪)是指:给出目标在…
这个应该是目前最全的Tracking相关的文章了 一.Surveyand benchmark: 1.      PAMI2014:VisualTracking_ An Experimental Survey,代码:http://alov300pp.joomlafree.it/trackers-resource.html 2.      CVPR2013:Online Object Tracking: A Benchmark(需FQ) 3.      SignalProcessing  2011:…