python3 pandas DataFrame常见用法】的更多相关文章

df = pandas.read_clipboard() df 获取索引和值 df.index df.values DataFrame的values属性将数据以二维ndarray形式返回,dtype类型会自动选择…
DataFrame.drop_duplicates(subset=None, keep='first', inplace=False) subset考虑重复发生在哪一列,默认考虑所有列,就是在任何一列上出现重复都算作是重复数据 keep 包含三个参数first, last, False,first是指,保留搜索到的第一个重复数据,之后的都删除:last是指,保留搜索到的最后一个重复数据,之前的搜索到的重复数据都删除,False是指,把所有搜索到的重复数据都删除,一个都不保留,即如果有两行数据重复…
concat 与其说是连接,更准确的说是拼接.就是把两个表直接合在一起.于是有一个突出的问题,是横向拼接还是纵向拼接,所以concat 函数的关键参数是axis . 函数的具体参数是: concat(objs,axis=0,join='outer',join_axes=None,ignore_index=False,keys=None,levels=None,names=None,verigy_integrity=False) objs 是需要拼接的对象集合,一般为列表或者字典 axis=0 是…
Python3 pandas用法大全 一.生成数据表 1.首先导入pandas库,一般都会用到numpy库,所以我们先导入备用: import numpy as np import pandas as pd 2.导入CSV或者xlsx文件: df = pd.DataFrame(pd.read_csv('name.csv',header=1)) df = pd.DataFrame(pd.read_excel('name.xlsx')) #pandas还可以读取一下文件: read_csv, rea…
python3 字典常见用法总结 Python字典是另一种可变容器模型,且可存储任意类型对象,如字符串.数字.元组等其他容器模型. 一.创建字典 字典由键和对应值成对组成.字典也被称作关联数组或哈希表.基本语法如下: dict = {'} # 也可如此创建字典 dict1 = { 'abc': 456 } dict2 = { 'abc': 123, 98.6: 37 } 注意: 每个键与值用冒号隔开(:),每对用逗号,每对用逗号分割,整体放在花括号中({}). 键必须独一无二,但值则不必. 值可…
Python3 Pandas的DataFrame数据的增.删.改.查 一.DataFrame数据准备 增.删.改.查的方法有很多很多种,这里只展示出常用的几种. 参数inplace默认为False,只能在生成的新数据块中实现编辑效果.当inplace=True时执行内部编辑,不返回任何值,原数据发生改变. import numpy as np import pandas as pd #测试数据. df = pd.DataFrame(data = [[']],index = [1,2,3],col…
Python3 Pandas的DataFrame格式数据写入excle文件.json.html.剪贴板.数据库 一.DataFrame格式数据 Pandas是Python下一个开源数据分析的库,它提供的数据结构DataFrame极大的简化了数据分析过程中一些繁琐操作,DataFrame是一张多维的表,大家可以把它想象成一张Excel表单或者Sql表: import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(…
关键缩写和包导入 在这个速查手册中,我们使用如下缩写: df:任意的Pandas DataFrame对象 s:任意的Pandas Series对象 raw:行标签 col:列标签 引入响应模块: import pandas as pd import numpy as np 导入数据 pd.read_csv(filename_path):从CSV文件导入数据 pd.read_table(filename_path):从限定分隔符的文本文件导入数据 pd.read_excel(filename_pa…
示例: 有如下表需要进行行转列: 代码如下: # -*- coding:utf-8 -*- import pandas as pd import MySQLdb from warnings import filterwarnings # 由于create table if not exists总会抛出warning,因此使用filterwarnings消除 filterwarnings('ignore', category = MySQLdb.Warning) from sqlalchemy i…
摘自:http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.loc.html 具体用法,假设数据源为: >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', 'sidewinder'], ... columns=['max_speed', 'shield']) >>> df max_s…