spark是迭代式的内存计算框架,具有很好的高可用性.sparkStreaming作为其模块之一,常被用于进行实时的流式计算.实时的流式处理系统必须是7*24运行的,同时可以从各种各样的系统错误中恢复. 在实际使用中,容错和数据无丢失显得尤为重要.最近看了官网和一些博文,整理了一下对Spark Streaming的容错和数据无丢失机制. checkPoint机制可保证其容错性.spark中的WAL用来改进恢复机制,保证数据的无丢失. checkPoint机制介绍 Spark Streaming需…
官方这么说的 [Since Spark 1.2] Configuring write ahead logs - Since Spark 1.2, we have introduced write ahead logs for achieving strong fault-tolerance guarantees. If enabled, all the data received from a receiver gets written into a write ahead log in the…
一. 容错机制 1.背景 要理解Spark Streaming提供的容错机制,先回忆一下Spark RDD的基础容错语义: 1.RDD,Ressilient Distributed Dataset,是不可变的.确定的.可重新计算的.分布式的数据集.每个RDD都会记住确定好的计算操作的血缘关系, (val lines = sc.textFile(hdfs file); val words = lines.flatMap(); val pairs = words.map(); val wordCou…
Spark Streaming 为了实现容错特性,接收到的数据需要在集群的多个Worker 节点上的 executors 之间保存副本(默认2份).当故障发生时,有两种数据需要恢复: 1. 已接收并且有副本的数据.当只有一台worker 发生故障时,这些数据不会丢失 2. 已接收但还没有副本的数据.只能从数据源重新获取 我们需要考虑两种发生故障的情况: 1. Worker 节点故障.如果receiver 运行在发生故障的worker 上,缓存的数据将丢失. 2. Driver 发生故障.很显然…
一.Spark streaming Job 架构 SparkStreaming框架会自动启动Job并每隔BatchDuration时间会自动触发Job的调用. Spark Streaming的Job 分为两大类: 每隔BatchInterval时间片就会产生的一个个Job,这里的Job并不是Spark Core中的Job,它只是基于DStreamGraph而生成的RDD的DAG而已:从Java角度讲相当于Runnable接口的实现类,要想运行Job需要将Job提交给JobScheduler,在J…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级函数进行复杂算法的处理…
Overview A Quick Example Basic Concepts Linking Initializing StreamingContext Discretized Streams (DStreams) Input DStreams and Receivers Transformations on DStreams Output Operations on DStreams DataFrame and SQL Operations MLlib Operations Caching…
当我们正确地部署好Spark Streaming,我们就可以使用Spark Streaming提供的零数据丢失机制.为了体验这个关键的特性,你需要满足以下几个先决条件: 1.输入的数据来自可靠的数据源和可靠的接收器: 2.应用程序的metadata被application的driver持久化了(checkpointed ); 3.启用了WAL特性(Write ahead log). 下面我将简单地介绍这些先决条件. 可靠的数据源和可靠的接收器 对于一些输入数据源(比如Kafka),Spark S…
Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍 http://www.cnblogs.com/shishanyuan/p/4747735.html 1.Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP…
1.Spark Streaming简介 官方网站解释:http://spark.apache.org/docs/latest/streaming-programming-guide.html 该博客转载于:http://www.cnblogs.com/shishanyuan/p/4747735.html 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitt…